| 研究生: |
陳羿行 Chen, Yi-SING |
|---|---|
| 論文名稱: |
加勁擋土結構動態行為分析於設計之應用探討 Analyzing Dynamic Behavior of Geosynthetic-reinforced Soil Retaining Structures Design Applications |
| 指導教授: |
陳景文
Chen, Jing-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 二維有限差分軟體 、加勁擋土結構 、動態設計參數 、擋土牆動態設計 |
| 外文關鍵詞: | reinforced siol retaining structues, dynamic design method of geosynthetic, FLAC, dynamic design parameters. |
| 相關次數: | 點閱:110 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先前研究由二維有限差分軟體(Fast Largragian Analysis of Continua)所建立之數值模型探討加勁擋土結構在不同設計參數下受到動態行為之應力應變。實驗成果顯示增加埋設比與加勁度可提升加勁擋土結構之抗震性。但由於工程上對於加勁擋土結構之穩定分析採用極限帄衡法,故內部之應力應變情形無法分析,在加勁擋土結構設計時僅能採取保守策略。
本研究根據先前研究修正後之數值模型,以真實地震荷重下之情況模擬,探討加勁擋土結構在動態行為下的降伏加速度變化、加勁材的受力情形、規範設計加勁材軸力與模擬之比較及土體之共振頻率。本研究期望經由上述參數之探討,在加勁擋土動態設計施工至完工使用期間,以各階段的變形量預測應力-應變情形分析,進一步改進加勁擋土結構之設計。
研究發現,增加加勁度與埋設比可以減少內部加勁材軸力。另外提高加勁度可以增加模型之共振頻率。根據FHWA(Federal Highway Administration)、NCMA(National Concrete Masonry Association)規範計算之各層軸力與破壞面,顯示規範對於擋土牆之設計太過於保守,且未探討加勁度之影響,故設計上無法充分利用材料之強度。
Previous researches build the numerical models by FLAC (Fast Lagrangian Analysis of Continua) which is a two-dimensional and explicit dynamic finite difference program, to discuss the stress and strain of the dynamic behavior under the situations of different design parameters. Experimental results indicated that when reinforcement length and reinforcement stiffness increased, the seismic resistance of reinforced soil retaining structures also improved. In geotechnical engineering, stability of reinforced soil retaining structures usually adopted Limited Equilibrium Analysis (LEA), so the internal condition of stress and strains could not analysis and the design strategy of reinforced soil retaining structures are conservative.
In this study, the revised numerical model in previous studies is used to discuss the design variables of dynamic loading under real seismic records situations. The variations of yield acceleration, stress situations of reinforcement, resonance frequency of soil, and comparisons of reinforcement axial force between guidelines and simulated model are considered. According to the discussions of the design variables, the deformation analysis of stress-strains situation can be predicted by the variations in the application levels of reinforced soil retaining structures between construction and completion. And the design of the reinforced soil retaining structures can be more completed.
Experimental results demonstrate that internal reinforcement axial force decreases with increasing reinforcement length and increasing stiffness/strength. And resonance frequency of the simulated model increases with increasing reinforcement length and stiffness/strength. According to reinforcement axial force of each layer and failure surfaces which calculated with FHWA and NCMA, reinforcement soil retaining structures designs are too conservative. The guidelines did not consider the effect of stiffness, so the design failed to take full advantage of the strength of materials.
參考文獻
1. 中華地工材料協會,加勁擋土結構設計及施工手冊,中華地工材料協會,(2001)。
2. 王鴻圖,「加勁邊坡土體動態行為之模擬分析」,國立成功大學土木工程研究所碩士論文,(2006)。
3. 王惠茹,「加勁擋土設施動態行為之模擬分析」,國立成功大學土木研究所碩士論文,(2008)。
4. 江鑑清,「疊塊式加勁邊坡之靜動態行為分析」,國立台灣海洋大學河海工程學系碩士論文,(2002)。
5. 交通部,「交通技術標準規範公路類公路工程部公路橋梁耐震設計規範」,(2008)。
6. 李維峰、黃亦敏,「加勁擋土牆動態設計與研發」,地工技術,第85期,第13-24頁,(2001)。
7. 洪榮祥,「加勁邊坡動態行為之模擬分析」,國立成功大學土木工程研究所碩士論文,(2007)。
8. 陳天健,「加勁擋土牆靜動態行為之均質化分析」,國立台灣大學土木工程學研究所博士論文,(1998)。
9. 陳建吾,「加勁擋土牆動態行為之模擬」,國立成功大學土木工程研究所碩士論文,(2004)。
10. 蔡浻祥,「加勁邊坡動態行為模擬之分析」,國立成功大學土木工程研究所碩士論文,(2005)。
11. 賴盈如,「加勁邊坡動態反應分析」,國立台灣海洋大學河海工程學系碩士論文,(2002)。
12. Bathurst, R.J., and Koerner, R.M., ―Results of Class A Predictions for the RMC Reinforced Soil Wall Trials‖, The Application of Polymeric Reinforcement in Soil Retaining Structures, P.M. Jarrett and A. McGown, Eds., NATO ASI Series, Series E: Applied Sciences – Vol. 147, Kluwer Academic Publishers, Boston, pp. 127-171, (1988).
13. Bathurst, R.J., and Hatami, K., ―Seismic Response Analysis of a Geogrid-Reinforced Soil Retaining Wall‖, Geosynthetics International, Vol.5, No.1-2, pp. 127-166, (1998).
14. Bathurst, R.J., and Hatami, K., ―Dynamic Response of Reinforced-Soil Retaining Walls to Ground Motion‖, Parametric Analysis. Proceedings of the 17th Canadian Congress of Applied Mechanics, CANCAM 99, McMaster University, Hamilton, Ontario, Canada, Part. 2, pp. 89-90, (1999).
15. Bassett, R.H., and Last, H.C., ―Reinforced Earth Below Footings and Embankments,‖ Proceeding of Symposium on Reinforced Earth, ASCE, Pittsburgh, pp. 222-331, (1978).
16. Bonaparte, R., Holtz, R.D., and Giroud, J.P., ―Soil Reinforcement Design Using Geotextiles and Geogrids‖, Geotextile Testing and the Desing Engineer, ASTM STP 952, J. E. Fluet, Jr., Ed.,American Society for Testing and Materials, Philadelphia, pp. 69-116, (1987).
17. Bonaparte, R., Schmertmann, G.R., and Willians, N.D., ―Seismic design of slopes reinforced with geogrid geotextiles‖, The 4th Inter. Con. on Geotextiles and Geomembranes, Netherland, Vol. 1, pp. 97-99, (1986).
18. Burgess, G.P., ―Two Full-Scale Model Geosynthetic-Reinforced Segmental Retaining Walls,‖ Master of Science Thesis, Royal Military College of Canada, Kingston, (1999).
19. Cai, Z., Bathurst, R.J., ―Seismic-Induced Permanent Displacement Of Geosynthetic-reinforced Segmental Retaining Walls‖, Can.Geotech.J. 33, pp. 937-955, (1996)
20. Central Weather Bureau, Acceleration Time-History Data, (2002).
21. Duncan, J.M., Byrne, P., Wong, K.S., and Mabry, P. ―Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analyses of Stresses and Movements in Soil Masses‖, Geotechnical Engineering Report, No. UCB/GT/80-01, University of California, Berkeley, (1980).
22. FHWA, Manual for Design and Construction Monitoring of Soil Nail Walls, FHWA-SA-96-069R, Federal Highway Administration, U.S.A., (1998).
23. Hatami, K., and Bathurst, R.J., ―Effect of Structural Design on Fundamental Frequency of Reinforced-Soil Retaining Walls‖, Soil Dynamics and Earthquake Engineering, April, pp. 137-157, (2000).
24. Itasca Consulting Group, Fast Lagrangian Analysis of Continua, Itasca Consulting Group, Inc. Volume I, II, III, IV, (1999).
25. Kramer, S.L., ―Geotechnical Earthquake Engineering‖, Prentice Hall International Series, University of Washington, pp. 54-105, (1996).
26. Kramer, S.L., and Paulsen, S.B., ―Seismic Performance Evaluation Of Reinforced Slopes‖, Geosynthetics International, November, NO. 6, pp. 429-438, (2004).
27. Lade, P.V., and Lee, K.L., ―Engineering Properties of Soils,‖ Report UCLA-ENG-7652, pp. 145, (1976).
28. Lee, W.F., ―Internal Stability Analyses of Geosynthetic Reinforced Retaining Walls‖, Ph.D. dissertation, Department of Civil and Environmental Engineering, University of Washington, (2000).
29. Matsuo, O., Tsutsumi, K., Yokoyama, K., and Saito, Y., ―Shaking Table Tests and Analyses of Geosynthetic-Reinforced Soil Retaining Wall‖, Geosynthetics International, Vol 5, No. 1-2, pp. 97-126, (1998).
30. McElroy, J.A., ―Seismic stability of geosynthetic reinforced slopes: a shaking table study‖, Master of Science of Thesis, University of Washington, (1997).
31. Bathurst, R. J., ―Segmental Retaining Walls – Seismic Design Manual‖, National Concrete Masonry Association, NCMA, 1st Edition, USA, (1998).
32. Nova-Roessig, L., ―Centrifuge studies of the seismic performance of reinforced soil structures‖, Ph.D. Dissertation, University of California, Berkeley, pp. 233, (1999).
33. Nagel, R. B., ―Seismic Behavior of the Reinforced Earth Walls,‖ Research Report 85-4, Department of Civil Engineering, University of Canterbury, New Zealand, (1985).
34. Perez, A., ―Seismic Response of Geosynthetic Reinforced Steep Slopes‖, Master of Science Thesis, University of Washington, (1999).
35. Paulsen, S.B., and Kramer, S.L., ―A Predictive Model For Seismic Displacement Of Reinforced Slopes‖, Geosynthetics International, November, NO. 6, pp. 407-428, (2004).
36. Richardson, G.N., and Lee, K.L., ―Seismic Design of Reinforced Earth Walls‖, Journal of Geotechnical Engineering, ASCE, Vol. 101, pp. 167-188, (1975).
37. Richardson, G.N., ―Earthquake Resistant Reinforced Earth Walls‖, Proceeding of Symposium on Earth Reinforcement, ASCE, Pittsburgh, pp. 664-683, (1978).
38. Richardson, G.N., Feger, D., Fong, A., and Lee, K.L., ―Seismic Testing of Reinforced Earth Walls‖, Journal of Geotechnical Engineering, ASCE, Vol. 103, pp. 1-17, (1977).
39. Rowe, R.K., and Ho, S.K., ―Application of Finite Element Techniques to the Analysis of Reinforced Soil Walls‖, The Application of Polymeric Reinforcement in Soil Retaining Structures, P.M. Jarrett and A. McGown, Eds., NATO ASI Series, Series E: applied Sciences – Vol. 147, Kluwer Academic Publishers, Boston, pp. 541-556, (1988).
40. Rowe, R. K., and Ho, S. K., ―Keynote Lecture: A Review of the Behavior of Reinforced Soil Walls‖, Earth Reinforcement Practice, Proceedings of the International Symposium on Earth Reinforcement Practice, Fukuoka, H. Ochiai, S. Hayashi and J. Otani, Eds., Balkema, Rotterdam, pp. 801-830, (1993).
41. Sakaguchi, M., Muramatsu, M., and Nagura, K., ―A Discussion on Reinforced Embankment Structures Having High Earthquake Resistance‖, Proceeding of the International Symposium on Earth Reinforcement, Fukuoka, Japan, pp. 287-292, (1992).
42. Sakaguchi, M., ―Study of the Seismic Behavior of Geosynthetic Reinforced walls in Japan‖, Geosynthetics International, Volume 3, No. 1, pp. 13-30, (1996).
43. Seed, H.B., and Whitman, R.V., ―Design of Earth Retaining Structures for Dynamic Loads‖, ASCE Specialty Conference: Lateral Stresses in the Ground and Design of Earth Retaining Structures, Ithaca, NY, pp. 103-147, (1970).
44. Yogendrakumar, M., Bathurst, R.J., and Finn, W.D.L., ―Dynamic Response Analysis of Reinforced-Soil Retaining Walls‖, Journal of Geotechnical Engineering, ASCE, Vol. 118, pp. 1158-1167, (1992).