簡易檢索 / 詳目顯示

研究生: 江文仁
Chiang, Wen-Jen
論文名稱: 鋼筋混凝土梁在彎矩與扭矩組合載重下之軟化特性
The Softening Characteristic of Reinforced Concrete Beams Subjected to Combined Moment and Torsion.
指導教授: 方一匡
Gang, I-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 94
中文關鍵詞: 軟化扭矩與彎矩組合載重
外文關鍵詞: ratio of torsion to bending(T/M), softening
相關次數: 點閱:67下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文旨在探討配置不同縱向鋼筋量之鋼筋混凝土梁在受到扭矩與彎矩的組合載重作用下之軟化特性。
      本研究共使用11根方形斷面之高強度鋼筋混凝土梁(fc’=69MPa),斷面尺寸為420 × 420 mm,主要考慮之變數為扭矩與彎矩組合載重比例值(T/M)和縱向鋼筋量等(Al)。
      研究結果顯示:(1) 在相同配筋條件下,試體受不同T/M比例值作用,在試體頂面及底面之主應變角(θp)會隨著T/M比例值之增加而變大;試體增加縱向鋼筋量,在承受相同T/M比例值,頂面、側面及底面會隨著ρl/ρt比例值之增加而變小;(2) 在極限強度階段,試體頂面混凝土之平均主張應變(εr)會隨著T/M比例值的增加而增大,頂面混凝土之平均主壓應變(εd)將會減少;增加縱向鋼筋量,試體頂面混凝土之平均主張應變與平均主壓應變均會減少;(3) 以Lessig所提出之斜彎矩理論與本研究中建構模擬斜彎矩理論模式計算試體第一破壞模式下頂面之壓力區厚度,鋼筋混凝土試體受相同T/M比例值作用下,在極限強度階段時,試體頂面的壓力區厚度會隨著T/M比值的增加而減少。此外,當達極限強度階段時,試體頂面壓力區厚度會隨試體配置之縱向鋼筋量的增加而增大;(4) 採用Lessig之斜彎矩理論、Collins之斜彎矩理論及建構模擬斜彎矩理論模式依分析結果可以發現,Tu(test)/Tu(cal.)約介於0.89~1.21之間;上述之三種方法所預測之結果均非常接近,由此可知,混凝土之軟化現象確實存在於試體承受組合載重之中;(5) 由Hsu、McMullen 與 Ewida與本研究所建議之軟化係數計算公式,當試體在相同配筋條件下承受不同之T/M比例值作用時,試體在頂面之軟化現象會隨著T/M比例值的增加而變得越嚴重;在承受相同T/M比例值但增加縱向鋼筋量時,則會使試體的軟化現象較不嚴重。

    none

    目 錄 頁 數 摘要 I. 目錄 III. 表目錄 V. 圖目錄 VI. 符號表 X. 第一章 緒 論 1-1 研究背景 1. 1-2 文獻回顧 2. 1-3 研究目的 4. 第二章 試驗規劃 2-1 前期相關研究 5. 2-2 試體規劃 5. 2-3 試驗方法 6. 第三章 結果與討論 3-1 試體表面裂縫型式 8. 3-1-1 裂縫型式 8. 3-1-2 試體表面裂縫型式與T/M比例值之關係 8. 3-2 試體表面平均應變與T/M比例值之關係 11. 3-2-1 試體表面平均縱向應變與T/M比例值之關係 11. 3-2-2 試體表面平均橫向應變與T/M比例值之關係 12. 3-3 試體表面平均主應變與T/M比例值之關係 15. 3-3-1 平均主張應變與T/M比例值之關係 15. 3-3-2 平均主壓應變與T/M比例值之關係 17. 3-3-3 主應變角與T/M比例值之關係 19. 3-4試體在不同T/M比例值作用下之軟化特性 22. 3-4-1 建構模擬斜彎矩理論模式 22. 3-4-2 T/M比例值與壓剪區度之關係 31. 3-4-3 混凝土軟化與強度之關係 32. 3-4-4 T/M比例值與軟化係數之關係 33. 第四章 結論 36. 參考文獻 92.

    參考文獻

    1.Report of ACI Committee 363, “State-of-the-Art Report on high-Strength Concrete,” ACI Journal,
    Proceedings V. 81, No. 4, July-Aug.1984,pp.364-411.
    2.Robinson, J. R., and Demorieux, J. M., “Essais de traction-compression sur modeles d’ame de pouter en Beton Arme, IRABA Report,” Institut de Recherches Appliquees du Beton de I’Ame, Part 1 June 1968, P. 44 ; “Resistance Ultimate du Beton de I’ame de pouters en Double te en Beton Arme,” Part 2, May 1972, P. 53.
    3.Mitchell, D., and Collins, M. P., “Diagonal Compression Field Theory-A Rational Model for Structural Concrete in pure Torsion,” ACI Journal,
    Proceedings V. 71, No. 8, Aug. 1974, pp. 396-408.
    4.Hsu, T. T. C., and Mo, Y. L., “Softening of Concrete in Torsional Memebers-Theory and Tests,” ACI Journal, V. 82, No. 3, May-June 1985, pp.
    290-303.
    5.Vecchio, F. J., and Collins, M. P., “Modified Compression-Field Theory for Concrete Elements subjected to shear,” ACI Journal, Proceedings V. 83, No. 2, Mar.-Apr. 1986, pp. 219-231.
    6.Rasmussen, L. J., and Baker, G., “Torsion in Reinforced Normal and High-Strength Concrete Beams-Part 1: Experimental Test Series,” ACI Structural Journal, V. 92, No. 1, Jan.-Feb. 1995, pp. 56-62.
    7.Zhang, L. X., and Hsu, T. T. C., “BEHAVIOR AND ANALYSIS OF 100MPA CONCRETE MEMBRANE ELEMENTS,” JOURNAL OF STRUCTURAL ENGINEERING, Jan. 1998, pp. 24-29.
    8.黃嘉容, "鋼筋混凝土梁在彎矩和扭矩組合載重作用下之行為研究" 國立成功大學土木工程研究所碩士論文,中華民國九十一年七月.
    9.ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02),” American Concrete Institute, Michigan, 2002, P. 443.
    10.Lessig, N. N., “Studies of Cases of Concrete Failure in Rectangular Reinforced Concrete Elements Subjected to Combined Flexure and Torsion,”Design of Reinforced Structures, State Publishing Offices of Literature on Structural Engineering, Architecture and Construction Materials(Moscow) (in
    Russian), 1961, pp. 229-271. Translated by Portland Cement Association, Foreign Literature StudyNo.398.
    11.Collins, M. P., and Walsh, P. F.; Archer, F. E.; and Hall, A. S., “Ultimate Strength of Reinforced Concrete Beam Subjected to Combined Torsion and
    Bending,” Torsion of Structural Concrete, SP-18, American Concrete Institute, Detroit, 1968, pp. 379-402.
    12.Collins, M. P.; Walsh, P. F.; Archer, F. E.; and Hall, A. S., “Reinforced Concrete Beams Subjected to Combined Torsion, Bending and Shear,” UNICIV
    Report, No. R-14, University of New South Wales, October 1965.
    13.Yudin, V. K., “Determination of the
    Loading-Carrying Capacity of Rectangular
    Reinforced Concrete Elements Subjected to Combined Torsion and Bending,”Beton i Zhelezobeton (Concrete and Reinforced Concrete), Moscow, No. 6 (in Russian), June 1962, pp. 265-269.
    14.Elfgren, L., I. Karlsson, and A. Losberg, “Torsion-Bending-Shear Interaction for concrete Beams,” Journal of the Structural Division, ASCE, Vol. 100, No. ST 8, August 1974, pp. 1657-1676.
    15.Elfgren, L., “Reinforced Concrete Beams Loaded in Combined Torsion,Bending and Shear,”Publication 71:3, Division of Concrete Structures, Chalmers
    University of Technology, Goteborg, Sweden, 1972.
    16.Ewida, A. A., and McMullen,A.E.,
    “Torsion-shear-flexure interaction in reinforced concrete members,” Magazine of Concrete Research, V. 33, No. 115, June 1981, pp. 113-122.

    下載圖示 校內:2014-08-16公開
    校外:2014-08-16公開
    QR CODE