| 研究生: |
林凱祥 Lin, Kai-Hsiang |
|---|---|
| 論文名稱: |
紫外偏振光耳語廊模態共振n型氧化鋅與p型氮化鎵發光二極體 Ultraviolet polarization emission from individual horizontal n-ZnO MR/p-GaN LED with whispering-gallery-mode oscillation |
| 指導教授: |
徐旭政
Hsu, Hsu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 氧化鋅微米柱 、偏振 、耳語廊模態 、發光二極體 |
| 外文關鍵詞: | ZnO microrod, polarization emission, whispering-gallery-mode, light-emitting-diode |
| 相關次數: | 點閱:174 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鋅因為其具有寬能隙(3.37eV)與大激子束縛能(60meV),以及其與氮化鎵晶體的晶格匹配性,使得氧化鋅成為一個具有潛力的LED與LD半導體材料。氧化鋅微米柱具有良好的六角柱結構,透過光在內部全反射共振的形式可以產生耳語廊模態共振雷射,擁有低雷射閥值的特性。
我們製作了水平放置氧化鋅微米柱與氮化鎵複合異質接面二極體並觀察其特性。在電極的製作上使用了鎳金與氧化銦錫透明導電玻璃作為與氧化鋅和p型氮化鎵形成歐姆接觸的電極。元件在低電流時即可觀察到耳語廊模態的共振產生,並且具有紫外偏振發光的特性,增加了其在半導體雷射表現上的可能。
Zinc oxide has wide direct band gap (3.37eV) and large exciton binding energy (60 meV) and also a similar crystallography with GaN which makes it a promising material for light emitting diode (LED) and laser diode (LD). ZnO microrod has well hexagonal shape which can confine light inside by totally reflectivity and perform whispery-gallery-mode (WGM) lasing. WGM cavity provides a low loss that makes it has lower Q factor than traditional lasers.
Here, a horizontal n-ZnO microrod/ p-GaN thin film LED were produced in a simple fabrication process. The WGM emission and optical anisotropic properties of individual microrod-based LEDs were studied. The electroluminescence spectra of LED show a dominate peak at 380 nm with partially polarization behavior and WGM oscillation at low injection current, which has shown great potential for ZnO microrod base laser diode.
1. Ü. Özgür, Y. I. Alivov, A. T. C. Liu, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, "A comprehensive review of ZnO materials and devices," Journal of Applied Physics 98, 041301 (2005).
2. Z. Lichun, L. Qingshan, S. Liang, Z. Zhongjun, H. Ruizhi, and Z. Fengzhou, "Electroluminescence from n-ZnO : Ga/p-GaN heterojunction light-emitting diodes with different interfacial layers," Journal of Physics D: Applied Physics 45, 485103 (2012).
3. G. Y. Zhu, C. X. Xu, Y. Lin, Z. L. Shi, J. T. Li, T. Ding, Z. S. Tian, and G. F. Chen, "Ultraviolet electroluminescence from horizontal ZnO microrods/GaN heterojunction light-emitting diode array," Applied Physics Letters 101, 041110 (2012).
4. Z. F. Shi, X. C. Xia, W. Yin, S. K. Zhang, H. Wang, J. Wang, L. Zhao, X. Dong, B. L. Zhang, and G. T. Du, "Dominant ultraviolet electroluminescence from p-ZnO:As/n-SiC(6H) heterojunction light-emitting diodes," Applied Physics Letters 100, 4 (2012).
5. B. Xiang, P. W. Wang, X. Z. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. P. Yu, and D. L. Wang, "Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition," Nano Letters 7, 323 (2007).
6. C. H. Park, S. B. Zhang, and S. H. Wei, "Origin of p-type doping difficulty in ZnO: The impurity perspective," Physical Review B 66, 3 (2002).
7. C. Xu, J. Dai, G. Zhu, G. Zhu, Y. Lin, J. Li, and Z. Shi, "Whispering-gallery mode lasing in ZnO microcavities," Laser & Photonics Reviews 8, 469 (2014).
8. M. Xiaoming, L. Hao, W. Haoning, L. Songzhan, C. Zhao, W. Jiawei, F. Yamin, L. Yuping, O. Yifang, and F. Guojia, "Enhanced ultraviolet electroluminescence and spectral narrowing from ZnO quantum dots/GaN heterojunction diodes by using high-k HfO2 electron blocking layer," Applied Physics Letters 105, 63505 (2014).
9. C. F. Du, C. H. Lee, C. T. Cheng, K. H. Lin, J. K. Sheu, and H. C. Hsu, "Ultraviolet/blue light-emitting diodes based on single horizontal ZnO microrod/GaN heterojunction," Nanoscale Research Letters 9, 1 (2014).
10. H. Z. Zhang, R. S. Shen, H. W. Liang, Y. D. Liu, Y. Liu, X. C. Xia, and G. T. Du, "n-ZnO/p-GaN heterojunction light-emitting diodes with a polarization-induced graded-p-AlxGa1-xN electron-blocking layer," Journal of Physics D: Applied Physis. 46, 5 (2013).
11. X. Li, J. Qi, Q. Zhang, Q. Wang, F. Yi, Z. Wang, and Y. Zhang, "Saturated blue-violet electroluminescence from single ZnO micro/nanowire and p-GaN film hybrid light-emitting diodes," Applied Physics Letters 102, 221103 (2013).
12. J. Dai, C. X. Xu, and X. W. Sun, "ZnO-Microrod/p-GaN Heterostructured Whispering-Gallery-Mode Microlaser Diodes," Advanced Materials 23, 4115 (2011).
13. J. B. You, X. W. Zhang, S. G. Zhang, J. X. Wang, Z. G. Yin, H. R. Tan, W. J. Zhang, P. K. Chu, B. Cui, A. M. Wowchak, A. M. Dabiran, and P. P. Chow, "Improved electroluminescence from n-ZnO/AlN/p-GaN heterojunction light-emitting diodes," Applied Physics Letters 96, 181116 (2010).
14. C. H. Chen, S. J. Chang, S. P. Chang, M. J. Li, I. C. Chen, T. J. Hsueh, and C. L. Hsu, "Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes," Applied Physics Letters 95, 223101 (2009).
15. J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," Journal of Physical Chemistry B 107, 8816 (2003).
16. V. Sandoghdar, F. Treussart, J. Hare, V. L. Seguin, J. M. Raimond, and S. Haroche, "Very low threshold whispering-gallery-mode microsphere laser," Physical Review A 54, 1777 (1996).
17. C. Czekalla, C. Sturm, R. S. Grund, B. Cao, M. Lorenz, and M. Grundmann, "Whispering gallery mode lasing in zinc oxide microwires," Applied Physics Letters 92, 241102 (2008).
18. R. Chen, B. Ling, X. W. Sun, and H. D. Sun, "Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks," Advanced Materials 23, 2199 (2011).
19. R. B. Liu, and B. S. Zou, "Lasing behaviour from the condensation of polaronic excitons in a ZnO nanowire," Chinese Physical B 20, 047104 (2011).
20. J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie, and H. Shen, "Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency," Applied Physics Letters 90, 3 (2007).
21. Z. F. Shi, Y. T. Zhang, X. J. Cui, B. Wu, S. W. Zhuang, F. Yang, X. T. Yang, B. L. Zhang, and G. T. Du, "Improvement of electroluminescence performance by integration of ZnO nanowires and single-crystalline films on ZnO/GaN heterojunction," Applied Physics Letters 104, 5 (2014).
22. X. Mo, H. Long, H. Wang, S. Li, Z. Chen, J. Wan, Y. Feng, Y. Liu, Y. Ouyang, and G. Fang, "Enhanced ultraviolet electroluminescence and spectral narrowing from ZnO quantum dots/GaN heterojunction diodes by using high-k HfO2 electron blocking layer," Applied Physics Letters 105, 063505 (2014).
23. J. J. Dong, X. W. Zhang, Z. G. Yin, J. X. Wang, S. G. Zhang, F. T. Si, H. L. Gao, and X. Liu, "Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes," Applied Physics Letters 100, 4 (2012).
24. J. Dai, C. X. Xu, and X. W. Sun, "ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes," Advanced Materials 23, 4115 (2011).
25. Q. Zhang, J. J. Qi, X. Li, F. Yi, Z. Z. Wang, and Y. Zhang, "Electrically pumped lasing from single ZnO micro/nanowire and poly(3,4-ethylenedioxythiophene):poly(styrenexulfonate) hybrid heterostructures," Applied Physics Letters 101, 5 (2012).
26. G. Y. Zhu, J. T. Li, Z. S. Tian, J. Dai, Y. Y. Wang, P. L. Li, and C. X. Xu, "Electro-pumped whispering gallery mode ZnO microlaser array," Applied Physics Letters 106, 4 (2015).
27. S. L. Chuang, and C. S. Chang, "k.p method for strained wurtzite semiconductors," Physical Review B 54, 2491 (1996).
28. E. P. Oreilly, and A. R. Adams, "BAND-STRUCTURE ENGINEERING IN STRAINED SEMICONDUCTOR-LASERS," Ieee Journal of Quantum Electronics 30, 366 (1994).
29. P. Waltereit, O. Brandt, M. Ramsteiner, A. Trampert, H. T. Grahn, J. Menniger, M. Reiche, R. Uecker, P. Reiche, and K. H. Ploog, "Growth of M-plane GaN(1(1)over-bar-00): A way to evade electrical polarization in nitrides," Physica Status Solidi A-Application and Materials Science. 180, 133 (2000).
30. S. Ghosh, P. Waltereit, A. Thamm, O. Brandt, H. T. Grahn, and K. H. Ploog, "Comparative study of the electronic band structure of strained C-plane and M-plane GaN films by polarized photoreflectance spectroscopy," Physica Status Solidi (a) - Applied Research. 192, 72 (2002).
31. L. Qian, L. Xifeng, and Z. Jianhua, "Microstructure, optical and electrical properties of gallium-doped ZnO films prepared by sol–gel method," Journal of Alloys and Compounds 572, 175 (2013).
32. X. Sheng, and W. Zhong Lin, "One-dimensional ZnO nanostructures: Solution growth and functional properties," Nano Res. 4, 1013 (2011).
33. A. B. Djurisic, A. M. C. Ng, and X. Y. Chen, "ZnO nanostructures for optoelectronics: Material properties and device applications," Prog. Quantum Electron. 34, 191 (2010).
34. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, "Correlation between photoluminescence and oxygen vacancies in ZnO phosphors," Applied Physics Letters 68, 403 (1996).
35. H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim, and S. Y. Lee, "Variation of light emitting properties of ZnO thin films depending on post-annealing temperature," Material Science and Engineering B:Solid State Materials for Advenced Technology. 102, 313 (2003).
36. H. J. Fan, R. Scholz, F. M. Kolb, M. Zacharias, U. Gosele, F. Heyroth, C. Eisenschmidt, T. Hempel, and J. Christen, "On the growth mechanism and optical properties of ZnO multi-layer nanosheets," Applied Physics A 79, 1895 (2004).
37. B. X. Lin, Z. X. Fu, Y. B. Jia, and G. H. Liao, "Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions," Journal of the Electrochemical Society 148, 110 (2001).
38. Y. I. Alivov, U. Ozgur, S. Dogan, C. Liu, Y. Moon, X. Gu, V. Avrutin, Y. Fu, and H. Morkoc, "Forward-current electroluminescence from GaN/ZnO double heterostructure diode," Solid-State Electron. 49, 1693 (2005).
39. L. Rayleigh, "The problem of the whispering gallery," Philosophical Magazine 20, 1001 (1910).
40. A. N. Oraevsky, "Whispering-gallery waves," Quantum Electronics 32, 377 (2002).
41. M. Marhic, L. Kwan, and M. Epstein, "Whispering-gallery CO2-laser," IEEE Journal of Quantum Electronics 15, 487 (1979).
42. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, "Optically pumped lasing of ZnO at room temperature," Applied Physics Letters 70, 2230 (1997).
43. 呂嘉濠, "Microcavity effects and optically pumped lasing behaviors in single ZnO microstructures," 國立成功大學光電科學與工程研究所碩士論文, (2013).
44. J. Z. Liu, S. Lee, Y. H. Ahn, J. Y. Park, K. H. Koh, and K. H. Park, "Identification of dispersion-dependent hexagonal cavity modes of an individual ZnO nanonail," Applied Physics Letters 92, 3 (2008).
45. G. Jacopin, L. Rigutti, A. D. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, "High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires," Nanoscale Research Letters 6, 6 (2011).
46. 郭浩中, 賴芳儀, 郭守義, LED原理與應用, "五南圖書出版公司," ( 2012)..
47. D. A. Neamen, "Semiconductor Physics and Devices:Basic Principles," McGraw-Hill, (2011).
48. K. C. S. A. S. Sedra, "Microelectronic Circuits," OXFORD university press, (2009).
49. C. F. Klingshirn, "Semiconductor Optics," Springer, (2007).
50. S. K. B. Ben G. Streetman, "Solid state electronic devices sixth edition," Pearson Prentice Hall, (2005).
51. Y. Zhang, and D. S. Diao, "Enhanced field emission from vertical ZnO nanoneedles on micropyramids " Chin. Phys. Lett. 26, 038101, (2009).
52. R. Schlaf, H. Murata, and Z. H. Kafafi, "Work function measurements on indium tin oxide films," Journal of Electron Spectroscopy and Related Phenomena 120, 149 (2001).
53. 蕭茹雄, "以金屬有機氣相沉積法成長p-型氮化鎵薄膜及其金屬歐姆特性分析," 中原大學電子工程學系碩士學位論文, (2001).
54. 羅丞曜, "銦鋅氧化膜基本特性及其與氮化鎵接觸應用之研究," 國立中央大學光電科學研究所碩士論文, (2001).
55. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, "HOLE COMPENSATION MECHANISM OF P-TYPE GAN FILMS," Japanese Journal of Applied Physics Part 1-Regular papers short notes & Review Papers. 31, 1258 (1992).
56. J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, "High-transparency Ni/Au ohmic contact to p-type GaN," Applied Physics Letters 74, 2340 (1999).
57. H. C. Hsu, G. M. Hsu, Y. S. Lai, Z. C. Feng, S. Y. Tseng, A. Lundskog, U. Forsberg, E. Janzen, K. H. Chen, and L. C. Chen, "Polarized and diameter-dependent Raman scattering from individual aluminum nitride nanowires: The antenna and cavity effects," Applied Physics Letters 101, 5 (2012).
58. A. Khan, "Raman spectroscopic study of the ZnO nanostructures," Journal of The Pakistan Materials Society 4, 5 (2010).
59. C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, "Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod," Applied Physics Letters 92, 223102 (2008).
60. U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, and P. Schlotter, "Nature of the 2.8 eV photoluminescence band in Mg doped GaN," Applied Physics Letters 72, 1326 (1998).
61. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Applied Physics Letters 91, 3 (2007).
62. E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, "Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes," Applied Physics Letters 98, 3 (2011).
63. G. Y. Zhu, J. T. Li, Z. S. Tian, J. Dai, Y. Y. Wang, P. L. Li, and C. X. Xu, "Electro-pumped whispering gallery mode ZnO microlaser array," Applied Physics Letters 106, 021111 (2015).
64. X. M. Mo, H. Long, H. N. Wang, S. Z. Li, Z. Chen, J. W. Wan, Y. M. Feng, Y. P. Liu, Y. F. Ouyang, and G. J. Fang, "Enhanced ultraviolet electroluminescence and spectral narrowing from ZnO quantum dots/GaN heterojunction diodes by using high-k HfO2 electron blocking layer," Applied Physics Letters 105, 5 (2014).
65. Y. D. Liu, H. W. Liang, X. C. Xia, R. S. Shen, Y. Liu, J. M. Bian, and G. T. Du, "Introducing Ga2O3 thin films as novel electron blocking layer to ZnO/p-GaN heterojunction LED," Applied Physics B-Lasers and Optic. 109, 605 (2012).
66. J. B. You, X. W. Zhang, S. G. Zhang, J. X. Wang, Z. G. Yin, H. R. Tan, W. J. Zhang, P. K. Chu, B. Cui, A. M. Wowchak, A. M. Dabiran, and P. P. Chow, "Improved electroluminescence from n-ZnO/AlN/p-GaN heterojunction light-emitting diodes," Applied Physics Letters 96, 3 (2010).
67. L. C. Zhang, Q. S. Li, L. Shang, Z. J. Zhang, R. Z. Huang, and F. Z. Zhao, "Electroluminescence from n-ZnO : Ga/p-GaN heterojunction light-emitting diodes with different interfacial layers," Journal of Physics D: Applied Physics. 45, 6 (2012).
68. Y. J. Lee, Z. P. Yang, F. Y. Lo, J. J. Siao, Z. H. Xie, Y. L. Chuang, T. Y. Lin, and J. K. Sheu, "Slanted n-ZnO/p-GaN nanorod arrays light-emitting diodes grown by oblique-angle deposition," APL Materials 2, 7 (2014).
校內:2018-08-31公開