簡易檢索 / 詳目顯示

研究生: 簡郡逸
Chien, Chun-Yi
論文名稱: 高低效率不同溝通情境下的社會互動神經基礎:一項三機MRI研究
Neural substrates of social interaction during high- and low-efficiency communication in a tri-MRI dyad-hyperscanning study
指導教授: 龔俊嘉
Kung, Chun-Chia
學位類別: 碩士
Master
系所名稱: 社會科學院 - 心理學系
Department of Psychology
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 57
中文關鍵詞: 鏡像神經元系統心智理論超掃描磁振造影預先溝通的協調賽局
外文關鍵詞: MNS, ToM, hyper-scanning MRI, coordination game with pre-play communication
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代的社會中,人與人的互相的社會互動已經進入到即使不用面對面也能完成的時代,而談論到社會互動時所需要的社會認知能力大部分都會談及鏡像神經元系統以及心智理論,但是過去實驗的情境許多都是以面對面互動(例如:觀察臉部表情以及模仿手勢等等)的刺激做為實驗設計。而本研究透過一項超掃描(同步紀錄互動參與者大腦活動)磁振造影的實驗試圖回答此類間接的社會互動議題,本研究設計了一項預先溝通的協調賽局作業,每次實驗會由四位參與者作為一組並且分成兩兩配對,由於僅能使用三台磁振造影掃描儀,實驗中同時會有一組「超掃描磁振造影組」以及「磁振造影-機外連線組」,每組配對互動六次後便會更換配對對象,每次試驗過程首先需要雙方先進行溝通,再進行真實選擇,而溝通時分成高效率溝通(H type,溝通回饋時顯示的結果有90%機率與溝通決策的選擇一致)以及低效率溝通(L type,溝通回饋時顯示的結果有50%機率與溝通決策的選擇一致),行為結果顯示高效率溝通情境下的協調成功率顯著高於低效率溝通,且在較易失敗的情境下「雙側額下回 – 雙側前扣帶皮層」以及「右頂顳葉交界處 – 右額下迴/右後扣帶皮質」發現了有效性連結的差異,說明鏡像神經元系統與心智理論的運作不是互相獨立,兩者的交互作用對於社會認知能力的運作是不可或缺的。最後,透過基於連結組的預測模型探索發現「背側楔前葉– 頂上小葉」以及「後扣帶皮質 – 腹外側楔前葉」兩組神經連結共同顯著預測(r = -0.4305, p =.001)參與者們的協調成功率。基於頂上小葉, 楔前葉與個人為基礎的價值計算高度相關,此「愈自我利益為基礎的思考,愈不容易合作成功」的發現,間接支持了「儘管處在不確定性情境中,只要多為他人著想,仍可建立人與人的互信基礎」。總而言之,本研究之結果為間接社會互動的大腦神經基礎帶來了進一步的認識。

    In modern society, interpersonal social interactions have entered an era where they can be completed without face-to-face communication. When discussing the social cognition required for social interaction, much of the focus is placed on the mirror neuron system (MNS) and Theory of Mind (ToM). However, many previous experimental designs have relied on face-to-face interactions (e.g., observing facial expressions and imitating gestures) as stimuli. This study aims to address issues of indirect social interaction through a hyper-scanning functional magnetic resonance imaging (fMRI) experiment, in which the brain activities of interacting participants are simultaneously recorded. We designed a coordination game with pre-play communication, where each session involved four participants grouped and paired into two dyads. Due to the availability of only three fMRI scanners, each session included one "hyper-scanning fMRI group" and one "fMRI-external connection group." After six trials of interaction within each dyad, participants were repaired with different partners. Each trial required the participants to first communicate and then make a decision. Communication was categorized into high-efficiency communication (H type), where feedback during communication had a 90% probability of aligning with the communicative decision, and low-efficiency communication (L type), where feedback had only a 50% probability of alignment. Behavioral results revealed that coordination success rates were significantly higher in the H type condition compared to the L type condition. Additionally, in the less successful L type condition, differences in effective connectivity were observed between bilateral IFG - bilateral ACC, as well as between rTPJ - rIFG/rPCC. These findings suggest that the operations of MNS and ToM are not independent, as well as their interaction is indispensable for social cognition. Finally, exploration using the connectome-based predictive model (CPM) revealed that two neural connections, the dorsal precuneus–SPL and PCC–ventral lateral precuneus, significantly predicted participants' coordination success rate (r = -0.4305, p = .001). Given the strong association of the SPL and precuneus with self-centered value computation, this finding—that greater self-interest-based thinking is less conducive to successful cooperation—indirectly supports the notion that "even in an uncertain context, fostering consideration for others can still establish a foundation of mutual trust." In summary, the findings of the present study provide further insights into the neural basis of indirect social interactions.

    Abstract ii Introduction 1 Materials and Methods 10 Funding Information 10 Participants 10 Experimental Task 11 Behavioral Data Analysis 13 fMRI Data Acquisition and Preprocessing 15 General Linear Model (GLM) 16 Psychophysiological Interactions (PPI) 16 Coherence Analysis 17 Connectome-based Predictive Modeling (CPM) 19 Results 20 Behavior Results 20 GLM Results 23 PPI Results 28 Coherence Analysis Results 29 CPM Results 33 Discussion 35 Future Works 40 Conclusion 40 References 42

    Andreasen, N. C., Calarge, C. A., & O'Leary, D. S. (2008). Theory of mind and schizophrenia: a positron emission tomography study of medication-free patients. Schizophrenia Bulletin, 34(4), 708-719. https://doi.org/10.1093/schbul/sbn034
    Apps, M. A., Rushworth, M. F., & Chang, S. W. (2016). The Anterior Cingulate Gyrus and Social Cognition: Tracking the Motivation of Others. Neuron, 90(4), 692-707. https://doi.org/10.1016/j.neuron.2016.04.018
    Aumann, R. J. (1974). Subjectivity and correlation in randomized strategies. Journal of Mathematical Economics 1, 67-96.
    Bardi, L., Six, P., & Brass, M. (2017). Repetitive TMS of the temporo-parietal junction disrupts participant's expectations in a spontaneous Theory of Mind task. Social Cognitive and Affective Neuroscience, 12(11), 1775-1782. https://doi.org/10.1093/scan/nsx109
    Benedetti, F., Bernasconi, A., Bosia, M., Cavallaro, R., Dallaspezia, S., Falini, A., Poletti, S., Radaelli, D., Riccaboni, R., Scotti, G., & Smeraldi, E. (2009). Functional and structural brain correlates of theory of mind and empathy deficits in schizophrenia. Schizophrenia Research, 114(1-3), 154-160. https://doi.org/10.1016/j.schres.2009.06.021
    Byom, L. J., & Mutlu, B. (2013). Theory of mind: mechanisms, methods, and new directions. Frontiers in Human Neuroscience, 7, 413. https://doi.org/10.3389/fnhum.2013.00413
    Compere, L., Mam-Lam-Fook, C., Amado, I., Nys, M., Lalanne, J., Grillon, M. L., Bendjemaa, N., Krebs, M. O., & Piolino, P. (2016). Self-reference recollection effect and its relation to theory of mind: An investigation in healthy controls and schizophrenia. Consciousness and Cognition, 42, 51-64. https://doi.org/10.1016/j.concog.2016.03.004
    Crawford, V. P., & Sobel, J. (1982). Strategic Information Transmission. Econometrica, 50, 1431-1451.
    Cui, X., Bryant, D. M., & Reiss, A. L. (2012). NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. NeuroImage, 59(3), 2430-2437. https://doi.org/10.1016/j.neuroimage.2011.09.003
    Czeszumski, A., Eustergerling, S., Lang, A., Menrath, D., Gerstenberger, M., Schuberth, S., Schreiber, F., Rendon, Z. Z., & Konig, P. (2020). Hyperscanning: A Valid Method to Study Neural Inter-brain Underpinnings of Social Interaction. Frontiers in Human Neuroscience, 14, 39. https://doi.org/10.3389/fnhum.2020.00039
    de Achaval, D., Villarreal, M. F., Costanzo, E. Y., Douer, J., Castro, M. N., Mora, M. C., Nemeroff, C. B., Chu, E., Bar, K. J., & Guinjoan, S. M. (2012). Decreased activity in right-hemisphere structures involved in social cognition in siblings discordant for schizophrenia. Schizophrenia Research, 134(2-3), 171-179. https://doi.org/10.1016/j.schres.2011.11.010
    de Lange, F. P., Spronk, M., Willems, R. M., Toni, I., & Bekkering, H. (2008). Complementary systems for understanding action intentions. Current Biology, 18(6), 454-457. https://doi.org/10.1016/j.cub.2008.02.057
    Downar, J., Crawley, A. P., Mikulis, D. J., & Davis, K. D. (2002). A Cortical Network Sensitive to Stimulus Salience in a Neutral Behavioral Context Across Multiple Sensory Modalities. Journal of Neurophysiology, 87.
    du Boisgueheneuc, F., Levy, R., Volle, E., Seassau, M., Duffau, H., Kinkingnehun, S., Samson, Y., Zhang, S., & Dubois, B. (2006). Functions of the left superior frontal gyrus in humans: a lesion study. Brain, 129(Pt 12), 3315-3328. https://doi.org/10.1093/brain/awl244
    Dushanova, J., & Donoghue, J. (2010). Neurons in primary motor cortex engaged during action observation. European Journal of Neuroscience, 31(2), 386-398. https://doi.org/10.1111/j.1460-9568.2009.07067.x
    Ebisch, S. J. H., Perrucci, M. G., Ferretti, A., Gratta, C. D., Romani, G. L., & Gallese, V. (2008). The Sense of Touch: Embodied Simulation in a Visuotactile Mirroring Mechanism for Observed Animate or Inanimate Touch. Journal of Cognitive Neuroscience, 20(9), 1611–1623. https://doi.org/10.1162/jocn.2008.20111
    Farrell, J. (1988). Communication coordination and Nash equilibrium. Economics Letters, 27.
    Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., Papademetris, X., & Constable, R. T. (2015). Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 1664-1671. https://doi.org/10.1038/nn.4135
    Fogassi, L. (2011). The mirror neuron system: How cognitive functions emerge from motor organization. Journal of Economic Behavior & Organization, 77(1), 66-75. https://doi.org/10.1016/j.jebo.2010.04.009
    Frewen, P. A., Lundberg, E., Brimson-Theberge, M., & Theberge, J. (2013). Neuroimaging self-esteem: a fMRI study of individual differences in women. Social Cognitive and Affective Neuroscience, 8(5), 546-555. https://doi.org/10.1093/scan/nss032
    Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and Modulatory Interactions in Neuroimaging. NeuroImage, 6, 218–229. https://doi.org/10.1006/nimg.1997.029
    Gallagher, H. L., & Frith, C. D. (2003). Functional imaging of ‘theory of mind’. Trends in Cognitive Sciences, 7(2), 77-83.
    Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593–609. https://doi.org/10.1093/brain/119.2.593
    Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2. https://doi.org/10.1016/S1364-6613(98)01262-5
    Gallese, V., & Sinigaglia, C. (2011). What is so special about embodied simulation? Trends in Cognitive Sciences, 15(11), 512-519. https://doi.org/10.1016/j.tics.2011.09.003
    Gazzola, V., & Keysers, C. (2009). The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cerebral Cortex, 19(6), 1239-1255. https://doi.org/10.1093/cercor/bhn181
    Gerrans, P. (2010). Mirror neuron systems: The role of mirroring processes in social cognition. Cognitive Neuropsychiatry, 15(5), 501-504. https://doi.org/10.1080/13546800903320510
    Gordon, R. M. (1992). The Simulation Theory Objections and Misconceptions. Mind & Language, 7.
    Gu, X., Hof, P. R., Friston, K. J., & Fan, J. (2013). Anterior insular cortex and emotional awareness. Journal of Comparative Neurology, 521(15), 3371-3388. https://doi.org/10.1002/cne.23368
    Hartwright, C. E., Apperly, I. A., & Hansen, P. C. (2015). The special case of self-perspective inhibition in mental, but not non-mental, representation. Neuropsychologia, 67, 183-192. https://doi.org/10.1016/j.neuropsychologia.2014.12.015
    Holmes, N., Rea, M., Hill, R. M., Boto, E., Leggett, J., Edwards, L. J., Rhodes, N., Shah, V., Osborne, J., Fromhold, T. M., Glover, P., Montague, P. R., Brookes, M. J., & Bowtell, R. (2023). Naturalistic Hyperscanning with Wearable Magnetoencephalography. Sensors (Basel), 23(12). https://doi.org/10.3390/s23125454
    Hu, S., Ide, J. S., Zhang, S., & Li, C. R. (2016). The Right Superior Frontal Gyrus and Individual Variation in Proactive Control of Impulsive Response. The Journal of Neuroscience, 36(50), 12688-12696. https://doi.org/10.1523/JNEUROSCI.1175-16.2016
    Iacoboni, M. (2005). Neural mechanisms of imitation. Current Opinion in Neurobiology, 15(6), 632-637. https://doi.org/10.1016/j.conb.2005.10.010
    Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7(12), 942-951. https://doi.org/10.1038/nrn2024
    Jeon, H., & Lee, S. H. (2018). From Neurons to Social Beings: Short Review of the Mirror Neuron System Research and Its Socio-Psychological and Psychiatric Implications. Clinical Psychopharmacology and Neuroscience, 16(1), 18-31. https://doi.org/10.9758/cpn.2018.16.1.18
    Koenigs, M., Barbey, A. K., Postle, B. R., & Grafman, J. (2009). Superior parietal cortex is critical for the manipulation of information in working memory. Journal of Neuroscience, 29(47), 14980-14986. https://doi.org/10.1523/JNEUROSCI.3706-09.2009
    Koster-Hale, J., & Saxe, R. (2013). Theory of mind: a neural prediction problem. Neuron, 79(5), 836-848. https://doi.org/10.1016/j.neuron.2013.08.020
    Liu, N., Mok, C., Witt, E. E., Pradhan, A. H., Chen, J. E., & Reiss, A. L. (2016). NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication. Frontiers in Human Neuroscience, 10, 82. https://doi.org/10.3389/fnhum.2016.00082
    Mahy, C. E., Moses, L. J., & Pfeifer, J. H. (2014). How and where: theory-of-mind in the brain. Developmental Cognitive Neuroscience, 9, 68-81. https://doi.org/10.1016/j.dcn.2014.01.002
    McCabe, K., Houser, D., Ryan, L., Smith, V., & Trouard, T. (2001). A functional imaging study of cooperation in two-person reciprocal exchange. Proceedings of the National Academy of Sciences, 98.
    Mellem, M. S., Jasmin, K. M., Peng, C., & Martin, A. (2016). Sentence processing in anterior superior temporal cortex shows a social-emotional bias. Neuropsychologia, 89, 217-224. https://doi.org/10.1016/j.neuropsychologia.2016.06.019
    Mitchell, J. P. (2008). Activity in right temporo-parietal junction is not selective for theory-of-mind. Cerebral Cortex, 18(2), 262-271. https://doi.org/10.1093/cercor/bhm051
    Montague, P. R., Berns, G. S., Cohen, J. D., McClure, S. M., Pagnoni, G., Dhamala, M., Wiest, M. C., Karpov, I., King, R. D., Apple, N., & Fisher, R. E. (2002). Hyperscanning: simultaneous fMRI during linked social interactions. NeuroImage, 16(4), 1159-1164. https://doi.org/10.1006/nimg.2002.1150
    Onitsuka, T., Shenton, M. E., Salisbury, D. F., Dickey, C. C., Kasai, K., Toner, S. K., Frumin, M., Kikinis, R., Jolesz, F. A., & McCarley, R. W. (2004). Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. American Journal of Psychiatry, 161(9), 1603-1611. https://doi.org/10.1176/appi.ajp.161.9.1603
    Pedersen, A., Koelkebeck, K., Brandt, M., Wee, M., Kueppers, K. A., Kugel, H., Kohl, W., Bauer, J., & Ohrmann, P. (2012). Theory of mind in patients with schizophrenia: is mentalizing delayed? Schizophrenia Research, 137(1-3), 224-229. https://doi.org/10.1016/j.schres.2012.02.022
    Pellegrino, G. D., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91, 176–180.
    Salvi, C., Beeman, M., Bikson, M., McKinley, R., & Grafman, J. (2020). TDCS to the right anterior temporal lobe facilitates insight problem-solving. Scientific Reports, 10(1), 946. https://doi.org/10.1038/s41598-020-57724-1
    Saxe, R., & Wexler, A. (2005). Making sense of another mind: the role of the right temporo-parietal junction. Neuropsychologia, 43(10), 1391-1399. https://doi.org/10.1016/j.neuropsychologia.2005.02.013
    Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews, 42, 9-34. https://doi.org/10.1016/j.neubiorev.2014.01.009
    Shamay-Tsoory, S. G., Shur, S., Barcai-Goodman, L., Medlovich, S., Harari, H., & Levkovitz, Y. (2007). Dissociation of cognitive from affective components of theory of mind in schizophrenia. Psychiatry Research, 149(1-3), 11-23. https://doi.org/10.1016/j.psychres.2005.10.018
    Shen, X., Finn, E. S., Scheinost, D., Rosenberg, M. D., Chun, M. M., Papademetris, X., & Constable, R. T. (2017). Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nature Protocols, 12(3), 506-518. https://doi.org/10.1038/nprot.2016.178
    Shen, X., Tokoglu, F., Papademetris, X., & Constable, R. T. (2013). Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. NeuroImage, 82, 403-415. https://doi.org/10.1016/j.neuroimage.2013.05.081
    Short, M. R., Hernandez-Pavon, J. C., Jones, A., & Pons, J. L. (2021). EEG hyperscanning in motor rehabilitation: a position paper. Journal of NeuroEngineering and Rehabilitation, 18(1), 98. https://doi.org/10.1186/s12984-021-00892-6
    Slane, M. M., Lusk, L. G., Boomer, K. B., Hare, A. E., King, M. K., & Evans, D. W. (2014). Social cognition, face processing, and oxytocin receptor single nucleotide polymorphisms in typically developing children. Developmental Cognitive Neuroscience, 9, 160-171. https://doi.org/10.1016/j.dcn.2014.04.001
    Sperduti, M., Guionnet, S., Fossati, P., & Nadel, J. (2014). Mirror Neuron System and Mentalizing System connect during online social interaction. Cognitive Processing, 15(3), 307-316. https://doi.org/10.1007/s10339-014-0600-x
    Stolk, A., Noordzij, M. L., Verhagen, L., Volman, I., Schoffelen, J. M., Oostenveld, R., Hagoort, P., & Toni, I. (2014). Cerebral coherence between communicators marks the emergence of meaning. Proceedings of the National Academy of Sciences, 111(51), 18183-18188. https://doi.org/10.1073/pnas.1414886111
    Strikwerda-Brown, C., Ramanan, S., & Irish, M. (2019). Neurocognitive mechanisms of theory of mind impairment in neurodegeneration: a transdiagnostic approach. Neuropsychiatric Disease and Treatment, 15, 557-573. https://doi.org/10.2147/NDT.S158996
    Tricomi, E. M., Delgado, M. R., & Fiez, J. A. (2004). Modulation of Caudate Activity by Action Contingency. Neuron, 41(2), 281-292. https://doi.org/10.1016/S0896-6273(03)00848-1
    Uddin, L. Q., Iacoboni, M., Lange, C., & Keenan, J. P. (2007). The self and social cognition: the role of cortical midline structures and mirror neurons. Trends in Cognitive Sciences, 11(4), 153-157. https://doi.org/10.1016/j.tics.2007.01.001
    Wang, L. S., Chang, Y. C., Liou, S., Weng, M. H., Chen, D. Y., & Kung, C. C. (2024). When "more for others, less for self" leads to co-benefits: A tri-MRI dyad-hyperscanning study. Psychophysiology, e14560. https://doi.org/10.1111/psyp.14560
    Wang, L. S., Cheng, J. T., Hsu, I. J., Liou, S., Kung, C. C., Chen, D. Y., & Weng, M. H. (2022). Distinct cerebral coherence in task-based fMRI hyperscanning: cooperation versus competition. Cerebral Cortex, 33(2), 421-433. https://doi.org/10.1093/cercor/bhac075
    Watanabe, T., Takezawa, M., Nakawake, Y., Kunimatsu, A., Yamasue, H., Nakamura, M., Miyashita, Y., & Masuda, N. (2014). Two distinct neural mechanisms underlying indirect reciprocity. Proceedings of the National Academy of Sciences, 111(11), 3990-3995. https://doi.org/10.1073/pnas.1318570111
    Wolf, I., Dziobek, I., & Heekeren, H. R. (2010). Neural correlates of social cognition in naturalistic settings: a model-free analysis approach. NeuroImage, 49(1), 894-904. https://doi.org/10.1016/j.neuroimage.2009.08.060
    Xie, H., Karipidis, II, Howell, A., Schreier, M., Sheau, K. E., Manchanda, M. K., Ayub, R., Glover, G. H., Jung, M., Reiss, A. L., & Saggar, M. (2020). Finding the neural correlates of collaboration using a three-person fMRI hyperscanning paradigm. Proceedings of the National Academy of Sciences, 117(37), 23066-23072. https://doi.org/10.1073/pnas.1917407117
    Yoneta, N., Watanabe, H., Shimojo, A., Takano, K., Saito, T., Yagyu, K., Shiraishi, H., Yokosawa, K., & Boasen, J. (2022). Magnetoencephalography Hyperscanning Evidence of Differing Cognitive Strategies Due to Social Role During Auditory Communication. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.790057
    Zamm, A., Loehr, J. D., Vesper, C., Konvalinka, I., Kappel, S. L., Heggli, O. A., Vuust, P., & Keller, P. E. (2024). A practical guide to EEG hyperscanning in joint action research: from motivation to implementation. Social Cognitive and Affective Neuroscience, 19(1). https://doi.org/10.1093/scan/nsae026
    Zeng, Y., Zhao, Y., Zhang, T., Zhao, D., Zhao, F., & Lu, E. (2020). A Brain-Inspired Model of Theory of Mind. Frontiers in Neurorobotics, 14, 60. https://doi.org/10.3389/fnbot.2020.00060
    Zhao, Q., Zhao, W., Lu, C., Du, H., & Chi, P. (2024). Interpersonal neural synchronization during social interactions in close relationships: A systematic review and meta-analysis of fNIRS hyperscanning studies. Neuroscience & Biobehavioral Reviews, 158, 105565. https://doi.org/10.1016/j.neubiorev.2024.105565

    無法下載圖示 校內:2026-07-18公開
    校外:2026-07-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE