| 研究生: |
吳宗翰 Wu, Tsung-Han |
|---|---|
| 論文名稱: |
水下機械手臂之設計與影像追蹤控制 Design and Image Tracking Control of Underwater Manipulator |
| 指導教授: |
王舜民
Wang, Shun-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 水下機械手臂 、水下載具 、LabVIEW軟體 、手臂正逆運動學 、PID控制器 |
| 外文關鍵詞: | underwater manipulators, unmanned underwater vehicles, LabVIEW software, forward and inverse kinematics of the manipulators, PID controller |
| 相關次數: | 點閱:54 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面對高風險且變化莫測的海洋,派遣潛水員下海探索是不安全的行為,因此透過無人水下載具(Unmanned Underwater Vehicles, UUV)搭配水下機械手臂取代潛水員,將更有利於完成水下作業。本研究致力於開發一套小型高靈活度的無人水下機械手臂系統,同時運用水下影像辨識系統追蹤目標物的軌跡,將可執行目標物抓取回收工作。
本研究之水下機械手臂運用SolidWorks 3D繪圖軟體設計機構及相關零配件,並利用3D列印技術製作部件,以及使用多種防水技巧完成組裝。此外,更透過Matlab Robotic Toolbox建立虛擬模型,模擬手臂在空間中運動的位置。
本研究之水下多軸機械手臂,經由手臂的正運動學計算座標位置,並運用手臂逆運動學推算機械手臂各關節的角度。同時,透過條件篩選出符合手臂的運動姿態,讓手臂終端達到想要的目標位置。在控制方面使用LabVIEW軟體編寫人機介面,透過陀螺儀量測機械手臂的角度誤差回授給控制器。其中,分别以開迴路控制器、前饋PID控制及增益調整控制器(Gain-Scheduled PID Controller, GSPID)調控機械手臂的伺服馬達,並利用陀螺儀量測結果比較三種不同控制器之手臂空間位置的誤差結果,得知GSPID控制器確實相對開迴路控制及前饋PID具有較高的精確度。本研究運用現有水下機械手臂控制理論,透過模擬與實際運作的過程,修正水下機械手臂運動控制器,應用在水下靜態、動態目標物的抓取。
In the face of high-risk and unpredictable ocean conditions, sending divers for underwater exploration is impractical. This research aims to develop a small and highly nimble underwater manipulator system. Additionally, an underwater Vision Sensing System was used to distinguish the target's trajectory through cameras and perform target grabs and retrieval work using unmanned underwater manipulators. The underwater multi-axis manipulators in this study used spatial coordinate transformation to calculate the forward and inverse kinematics of the manipulators. In addition, the appropriate movement posture that matches the manipulators was selected through condition filters, enabling the manipulators to achieve the desired target position. In terms of control, LabVIEW, a graphical programming platform, was used to design the user interface, and the gyroscope measured the angle error of the manipulators and fed it back to the controllers. Three types of servo motor controllers are tested in this research: an open-loop controller, a feedforward proportional-integral-derivative (PID) controller, and a Gain-Scheduled PID controller. The gyroscopic measurement results showed that using a Gain-Scheduled PID Controller provides higher accuracy than the other controller. This study applies existing underwater manipulator control theories to develop and modify the motion-controlling system through simulation and actual operation. The contribution of this research will expand the application of underwater exploration in both academic and industrial fields.
[1] Aldhaheri, S., De Masi, G., Pairet, È., & Ardón, P. (2022)." Underwater robot manipulation: advances, challenges and prospective ventures". Paper presented at the OCEANS 2022-Chennai.
[2] Armoon, M., Lafouti, M., Tavassoli, B., & Taghirad, H. D. (2022). "Robust Inverse Dynamics Control of the Remotely Operated Underwater Vehicle Manipulator". Paper presented at the 2022 8th International Conference on Control, Instrumentation and Automation (ICCIA).
[3] Bai, Y., Zhang, Q., & Zhang, A. (2022). "Dexterity Based Viscous Resistance Optimization of a Deep-Sea Manipulator". Journal of Marine Science and Engineering, 10(7), 876.
[4] Barbieri, L., Bruno, F., Gallo, A., Muzzupappa, M., & Russo, M. L. (2018). "Design, prototyping and testing of a modular small-sized underwater robotic arm controlled through a Master-Slave approach". Ocean Engineering, 158, 253-262.
[5] Cai, M., Wang, Y., Wang, S., Wang, R., Ren, Y., & Tan, M. (2020). "Grasping marine products with hybrid-driven underwater vehicle-manipulator system". IEEE Transactions on Automation Science and Engineering, 17(3), 1443-1454.
[6] Cheng, F.-T., Hour, T.-L., Sun, Y.-Y., & Chen, T.-H. (1997). "Study and resolution of singularities for a 6-DOF PUMA manipulator". IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 27(2), 332-343.
[7] Craig, J. J. (2006). "Introduction to robotics: Pearson Educacion".
[8] Dewi, T., Nurmaini, S., Risma, P., Oktarina, Y., & Roriz, M. (2020). " Inverse kinematic analysis of 4 DOF pick and place arm robot manipulator using fuzzy logic controller". International Journal of Electrical & Computer Engineering (2088-8708), 10(2).
[9] Esfahani, H. N., & Azimirad, V. (2013). " A new fuzzy sliding mode controller with PID sliding surface for underwater manipulators". International Journal of Mechatronics, Electrical and Computer Technology, 3(9), 224-249.
[10] Han, J., & Chung, W. K. (2013). "Active use of restoring moments for motion control of an underwater vehicle-manipulator system". IEEE journal of oceanic engineering, 39(1), 100-109.
[11] Koch, J., & Leichty, J. (2019). "Development of a robotic arm for mini-class ROV dexterous manipulation". Paper presented at the OCEANS 2019 MTS/IEEE SEATTLE.
[12] Leabourne, K. N., & Rock, S. M. (1998). "Model development of an underwater manipulator for coordinated arm-vehicle control". Paper presented at the IEEE Oceanic Engineering Society. OCEANS'98. Conference Proceedings (Cat. No. 98CH36259).
[13] Li, R., Anvar, A. P., Anvar, A. M., & Lu, T.-F. (2012). "Dynamic modeling of underwater manipulator and its simulation". International Journal of Mechanical and Mechatronics Engineering, 6(12), 2611-2620.
[14] Marani, G., & Yuh, J. (2014). " Introduction to autonomous manipulation". In Case Study with an Underwater Robot SAUVIM, volume 102 of Springer Tracts in Advanced Robotics: Springer.
[15] Mohan, S., & Kim, J. (2015). "Robust PID control for position tracking of an underwater manipulator". P aper presented at the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).
[16] Niku, S. B. (2020). " Introduction to robotics: analysis, control, applications: John Wiley & Sons".
[17] Prats, M., Garcia, J. C., Fernandez, J. J., Marin, R., & Sanz, P. J. (2011). "Advances in the specification and execution of underwater autonomous manipulation tasks". Paper presented at the OCEANS 2011 IEEE-Spain.
[18] Sahar, G., & Hollerbach, J. M. (1986). "Planning of minimum-time trajectories for robot arms". The International journal of robotics research, 5(3), 90-100.
[19] Shim, H., Jun, B.-H., Lee, P.-M., & Kim, B. (2013). " Dynamic workspace control method for underwater manipulator of floating ROV". International Journal of Precision Engineering and Manufacturing, 14, 387-396.
[20] Singh, P. K., & Krishna, C. M. (2014). " Continuum arm robotic manipulator: A review".
[21] Singh, T. P., Suresh, P., & Chandan, S. (2017). "Forward and inverse kinematic analysis of robotic manipulators". International Research Journal of Engineering and Technology (IRJET), 4(2), 1459-1468.
[22] Sivčev, S., Coleman, J., Omerdić, E., Dooly, G., & Toal, D. (2018). "Underwater manipulators: A review". Ocean Engineering, 163, 431-450.
[23] Sun, S.-S., & Meng, Q.-H. (1995). "Dynamic simulation of robot manipulators using graphical programming packages". Paper presented at the IEEE Pacific Rim Conference on Communications, Computers, and Signal Processing. Proceedings.
[24] Veselý, V., & Ilka, A. (2013). "Gain-scheduled PID controller design". Journal of process control, 23(8), 1141-1148.
[25] Wang, Y., Tang, C., Cai, M., Yin, J., Wang, S., Cheng, L., . . . Tan, M. (2020). "Real-time underwater onboard vision sensing system for robotic gripping". IEEE Transactions on Instrumentation and Measurement, 70, 1-11.
[26] Wang, Y., Wang, S., Wei, Q., Tan, M., Zhou, C., & Yu, J. (2015). "Development of an underwater manipulator and its free-floating autonomous operation". IEEE/ASME Transactions on Mechatronics, 21(2), 815-824.
[27] Yuh, J. (2000). " Design and control of autonomous underwater robots: A survey". Autonomous Robots, 8, 7-24.
[28] Zhang, B., Xie, Y., Zhou, J., Wang, K., & Zhang, Z. (2020). " State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review". C omputers and Electronics in Agriculture, 177, 105694.
[29] Zhao, Y., He, Z., Li, G., Wang, Y., & Li, Z. (2020). "Design and Application of a Small ROV Control System Based on ArduSub System". Paper presented at the 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT.
[30] Zhao, Z.-Y., Tomizuka, M., & Isaka, S. (1993). " Fuzzy gain scheduling of PID controllers". IEEE transactions on systems, man, and cybernetics, 23(5), 1392-1398.
[31] 伍柏勳。(2011)。四軸水下機械手臂之開發。
[32] 洪敏偉。(2006)。水下機械手臂之設計與製作。國立中山大學機械與機電工程研究所碩士論文。
[33] https://www.marinetechnologynews.com/news/class-547506,(工作型ROV DOER’s H3000)。
[34] https://cirs.udg.edu/auvs-technology/auvs/girona-500-auv/,(自主水下載具GIRONA500 AUV)。
[35] https://www.technipfmc.com/en/what-we-do/subsea/robotics/manipulator-systems/,(Schilling-Titan-4)。
[36] http://www.titanrob.com/,(TitanRob M501)。
[37] https://www.ecagroup.com/en/solutions/arm-7e,(Eca Hytec-Arm7E)。
[38] https://www.ecagroup.com/en/solutions/arm-5e,(Eca Hytec-Arm5E )。
校內:2028-12-22公開