簡易檢索 / 詳目顯示

研究生: 張晁瑞
Chang, Chao-Jui
論文名稱: 探討鐵系導電物質對微生物體在高溫下共營分解對苯二甲酸產甲烷之影響
Effects of Iron-based Conductive Materials on Microbiomes Converting Terephthalate to Methane Syntrophically at Thermophilic Conditions
指導教授: 吳哲宏
Wu, Jer-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 111
中文關鍵詞: 共營蛋白質體學對苯二甲酸直接種間電子轉移
外文關鍵詞: Syntrophy, Proteomics, Terephthalic acid, Direct interspecies electron transfer (DIET)
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 共營(Syntrophy)是兩種或兩種以上不同的微生物彼此依賴克服特殊化合物之熱力學障礙(Thermodynamically barrier),以獲得生長能量的一種微生物生態關係。在共營關係中,共營菌分解基質產生的過量電子會透過氫和甲酸之類的電子載體擴散到相鄰的微生物細胞中,這種透過電子載體在細胞間間接傳遞電子的方式稱為種間間接電子傳遞(Indirect Interspecies Electron Transfer, IIET)。電子也可以透過導電性纖毛和細胞膜上細胞色素在微生物間直接傳遞,稱為種間直接電子傳遞(Direct Interspecies Electron Transfer, DIET)。直接電子傳遞被認為有促進共營分解並在厭氧消化過程中提高甲烷產量的潛力。導電材料如活性碳和磁鐵礦的提供了DIET的另一種電子直接傳遞途徑,微生物附著到導電材料表面,直接透過導電性材料進行電子轉移。在厭氧分解乙酸、丙酸、丁酸和乙醇等小分子化合物的微生物群中,種間直接電子傳遞已經被證實,然而此機制是否存在於較複雜的苯環化合物的降解中仍不清楚。對苯二甲酸是製造聚酯纖維的原料,在工業製程中會產生大量含對苯二甲酸的廢水,雖然屬於生物難分解的苯環類化合物,厭氧微生物仍可以透過共營方式分解對苯二甲酸,產生甲烷與二氧化碳。為了探討導電材性材料是否影響對苯二甲酸厭氧降解,本研究使用16S rRNA 基因擴增子定序和蛋白質體學方法,分別探討批次實驗及厭氧反應槽在添加導電性材料前後的菌項與菌群活性變化。在批次實驗中,添加磁鐵礦的組別展現較好的產甲烷效率,並且促進不同的共營族群,如uncultured Chloroflexi phylum 和 Methanothermobacter species 生長,這和控制組的Syntrophorhabdus and Methanosaeta 是不一樣的。反應槽的產甲烷表現也在用含磁鐵礦的泡棉置換槽中一半的泡棉後提升。嗜氫型甲烷菌Methanolinea在有磁鐵礦的泡棉中組成比例提升。分析蛋白表現的結果顯示,產甲烷量提升可能是因為在沒有添加磁鐵礦泡棉中Methanosaeta及有添加磁鐵礦泡棉中Methanolinea and Syntrophorhabdus基因表現向上調節的結果。此結果顯示,磁鐵礦可能會改變厭氧對苯二甲酸共營降解時的路徑,從原本由對苯二甲酸→乙酸→甲烷的路徑轉變為對苯二甲酸→乙酸→氫氣+二氧化碳→甲烷。本研究提供一個導電材料影響芳香族化合物厭氧生物分解的結果。

    Syntrophy is a microbial relationship that two or more than two kinds of microorganisms work together to overcome the thermodynamical barrier during anaerobic degradation of a specific substrate for energy conservation. In the syntrophic process, the excess electrons produced by syntrophic microorganisms are transferred to the adjacent partners indirectly through the electron shuttle-like hydrogen and formate, called indirect interspecies electron transfer (IIET), or directly by the conductive pilin and membrane-bound cytochrome. The latter is called direct interspecies electron transfer (DIET), which may stimulate the syntrophic degradation process to enhance the methane yield potentially during anaerobic digestion. Conductive materials like activated carbon and magnetite potential provide an alternative pathway of DIET, in which the electrons are directly transferred when microorganisms adhere to the surface of conductive materials. DIET has been demonstrated with the anaerobic consortia in degrading small compounds like volatile fatty acids (acetate, propionate, and butyrate) and ethanol, but whether the underlying rationale works with aromatic compounds still remains unclear. Terephthalate acid (TA) is the raw material in the manufacturing of various plastic products. The TA-containing wastewater has been conventionally treated by the anaerobic biological treatment. Although TA is recalcitrant to anaerobes, it could be degraded into methane by the network of syntrophic consortia. To elucidate the metabolism of anaerobic TA degradation with conductive materials, the batch, and continuous reactor operation experiments were conducted, while the syntrophic consortia with and without magnetite were analyzed using a 16S rRNA gene amplicon sequencing and proteomics approach. In the batch experiment, the treatment with magnetite had a better methane production ability with facilitated growth of different syntrophic partners, like uncultured Chloroflexi populations and Methanothermobacter species as compared with the control group with the dominance of TA degrading, Syntrophorhabdus and acetotrophic Methanosaeta. The methane-producing ability of bioreactor was also promoted in the company with the increased abundance of the hydrogenotrophic methanogen – Methanolinea in responding to the replacement of sponge cubes in the reactor with the sponge embedded magnetite particles. The proteomics results revealed that the enhancement of the methane-production from the reactor might be attributed to the upregulated gene expression of Methanosaeta in the sponge without magnetite and Methanolinea and Syntrophorhabdus in sponge with magnetite. This study reveals that the magnetite might change the metabolic route of TA degradation from TA → acetate → methane to another pathway of TA → acetate → H2 + CO2 →methane. This study provides an insight into the effect of the conductive materials on the anaerobic degradation of an aromatic compound.

    摘要 I Abstract II Acknowledgments IV Contents V List of Figures VIII List of Tables X List of Abbreviations XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives 2 1.3 Framework 2 Chapter 2 Literature review 4 2.1 Energy transfer of anaerobic degradation 4 2.1.1 Anaerobic organic compound degradation 4 2.1.2 Syntrophy 7 2.2 Interspecies electron transfer 12 2.2.1 Indirect Interspecies electron transfer 12 2.2.2 Direct interspecies electron transfer 14 2.2.2.1 Biological DIET 14 2.2.2.2 Mediated DIET 15 2.2.3 The evidence of DIET 16 2.2.4 The DIET partnership 16 2.3 TA-degrading microorganism consortia 22 2.3.1 Characteristic of PTA wastewater 22 2.3.2 Mechanism of syntrophic TA degradation 22 2.3.3 Syntrophic TA degrading bacteria and methanogens partner 24 2.4 Method of metaproteomic analysis 26 2.4.1 Metaproteomic 26 2.4.2 Metaproteomic workflow 26 Chapter 3 Materials and methods 28 3.1 Bioreactor operation 28 3.1.1 Reactor setup 28 3.1.2 Operation of the TA reactor 29 3.2 Biochemical Methane Potential (BMP) test 29 3.2.1 Batch experiment design 29 3.2.2 Procedure of the batch experiment 29 3.2.3 Data processing 30 3.3 Water quality analysis 32 3.3.1 Analysis of terephthalic acid 32 3.3.2 Analysis of biogas composition 32 3.4 DNA experiment 33 3.4.1 DNA extraction 33 3.4.2 High-throughput bar-coded amplicon sequencing 33 3.4.3 Data analysis 34 3.5 Protein experiment 35 3.5.1 Protein extraction and quantification 35 3.5.2 In-solution digestion 36 3.5.3 LC-MS/MS analysis 36 3.5.4 Data annotation and processing 37 3.5.5 Comparative proteomics 37 Chapter 4 Results and Discussion 38 4.1 Anaerobic batch tests 38 4.1.1 The gas production in anaerobic batch test essays 38 4.1.2 Microbial community analysis of sludge from different testing groups 39 4.2 Performance evaluation of TA reactor operation 45 4.2.1 The methane production 47 4.2.2 Microbial community of TA reactor 49 4.2.3 Metaproteomic analysis 53 4.2.3.1 Protein expression of Methanosaeta thermophila PT 54 4.2.3.2 Protein expression of Methanolinea 57 4.2.3.3 Protein expression of Syntrophorhabdus 57 4.2.3.4 Protein expression of Pelotomaculum 58 4.2.3.5 Comprehensive discussion 62 Chapter 5 Conclusions and Suggestions 64 5.1 Conclusions 64 5.2 Suggestions 64 References 65 Supplementary information 79 Appendix 98 A1 The procedure of the Biochemical Methane Potential (BMP) test 98 A2 DNA extraction protocol 102 A3 Protein extraction protocol 104 A4 Protein quantification protocol 106 A5 In solution digestion protocol 108 A6 ZipTip desalt protocol 110 自述 111

    Adhikari, R.Y., Malvankar, N.S., Tuominen, M.T. and Lovley, D.R. (2016) Conductivity of individual Geobacter pili. RSC advances 6(10), 8354-8357.
    Aklujkar, M., Krushkal, J., DiBartolo, G., Lapidus, A., Land, M.L. and Lovley, D.R. (2009) The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens. BMC microbiology 9(1), 109.
    Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R. and Magrane, M. (2004) UniProt: the universal protein knowledgebase. Nucleic acids research 32(suppl_1), D115-D119.
    Baek, G., Kim, J., Kim, J. and Lee, C. (2018) Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies 11(1), 107.
    Barker, P.D. and Ferguson, S.J. (1999) Still a puzzle: why is haem covalently attached in c-type cytochromes? Structure 7(12), R281-R290.
    Benndorf, D., Balcke, G.U., Harms, H. and Von Bergen, M. (2007) Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. The ISME journal 1(3), 224-234.
    Bhandari, V. and Gupta, R.S. (2014) Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. Antonie van Leeuwenhoek 105(1), 143-168.
    Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.-X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R. and Caporaso, J.G. (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature biotechnology 37(8), 852-857.
    Boone, D.R. and Bryant, M.P. (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40(3), 626-632.
    Brown, C.T., Xiong, W., Olm, M.R., Thomas, B.C., Baker, R., Firek, B., Morowitz, M.J., Hettich, R.L. and Banfield, J.F. (2018) Hospitalized premature infants are colonized by related bacterial strains with distinct proteomic profiles. MBio 9(2), e00441-00418.
    Bryant, M., Campbell, L.L., Reddy, C. and Crabill, M. (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33(5), 1162-1169.
    Caspi, R., Foerster, H., Fulcher, C.A., Hopkinson, R., Ingraham, J., Kaipa, P., Krummenacker, M., Paley, S., Pick, J. and Rhee, S.Y. (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic acids research 34(suppl_1), D511-D516.
    Chait, B.T. (2006) Mass spectrometry: bottom-up or top-down? Science 314(5796), 65-66.
    Chen, C.-L., Macarie, H., Ramirez, I., Olmos, A., Ong, S.L., Monroy, O. and Liu, W.-T. (2004) Microbial community structure in a thermophilic anaerobic hybrid reactor degrading terephthalate. Microbiology 150(10), 3429-3440.
    Chen, C.-L., Wu, J.-H. and Liu, W.-T. (2008) Identification of important microbial populations in the mesophilic and thermophilic phenol-degrading methanogenic consortia. Water research 42(8-9), 1963-1976.
    Chen, C.-L., Wu, J.-H., Tseng, I.-C., Liang, T.-M. and Liu, W.-T. (2009) Characterization of active microbes in a full-scale anaerobic fluidized bed reactor treating phenolic wastewater. Microbes and Environments, 0904220077-0904220077.
    Chen, S., Rotaru, A.-E., Liu, F., Philips, J., Woodard, T.L., Nevin, K.P. and Lovley, D.R. (2014a) Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresource technology 173, 82-86.
    Chen, S., Rotaru, A.-E., Shrestha, P.M., Malvankar, N.S., Liu, F., Fan, W., Nevin, K.P. and Lovley, D.R. (2014b) Promoting interspecies electron transfer with biochar. Scientific reports 4, 5019.
    Chen, W.-Y., Kraková, L., Wu, J.-H., Pangallo, D., Jeszeová, L., Liu, B. and Yasui, H. (2017) Community and proteomic analysis of anaerobic consortia converting tetramethylammonium to methane. Archaea 2017.
    Cheng, Q. and Call, D.F. (2016) Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications. Environmental Science: Processes & Impacts 18(8), 968-980.
    Cord-Ruwisch, R., Lovley, D.R. and Schink, B. (1998) Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl. Environ. Microbiol. 64(6), 2232-2236.
    Craig, R. and Beavis, R.C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9), 1466-1467.
    Cruz Viggi, C., Rossetti, S., Fazi, S., Paiano, P., Majone, M. and Aulenta, F. (2014) Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environmental science & technology 48(13), 7536-7543.
    Dang, Y., Holmes, D.E., Zhao, Z., Woodard, T.L., Zhang, Y., Sun, D., Wang, L.-Y., Nevin, K.P. and Lovley, D.R. (2016) Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials. Bioresource technology 220, 516-522.
    DeWeerd, K.A., Mandelco, L., Tanner, R.S., Woese, C.R. and Suflita, J.M. (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Archives of Microbiology 154(1), 23-30.
    Dong, X., Cheng, G. and Stams, A. (1994a) Butyrate oxidation by Syntrophospora bryantii in co-culture with different methanogens and in pure culture with pentenoate as electron acceptor. Applied microbiology and biotechnology 42(4), 647-652.
    Dong, X., Plugge, C.M. and Stams, A.J. (1994b) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl. Environ. Microbiol. 60(8), 2834-2838.
    Dong, X. and Stams, A.J. (1995) Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation. Anaerobe 1(1), 35-39.
    Frank, J., Arntzen, M.Ø., Sun, L., Hagen, L.H., McHardy, A., Horn, S.J., Eijsink, V.G., Schnürer, A. and Pope, P.B. (2016) Novel syntrophic populations dominate an ammonia-tolerant methanogenic microbiome. Msystems 1(5), e00092-00016.
    Friedrich, M., Springer, N., Ludwig, W. and Schink, B. (1996) Phylogenetic Positions of Desulfofustis glycolicus gen. nov., sp. nov. and Syntrophobotulus glycolicus gen. nov., sp. nov., Two New Strict Anaerobes Growing with Glycolic Acid. International Journal of Systematic and Evolutionary Microbiology 46(4), 1065-1069.
    Geer, L.Y., Markey, S.P., Kowalak, J.A., Wagner, L., Xu, M., Maynard, D.M., Yang, X., Shi, W. and Bryant, S.H. (2004) Open mass spectrometry search algorithm. Journal of proteome research 3(5), 958-964.
    Guskos, N., Papadopoulos, G., Likodimos, V., Patapis, S., Yarmis, D., Przepiera, A., Przepiera, K., Majszczyk, J., Typek, J. and Wabia, M. (2002) Photoacoustic, EPR and electrical conductivity investigations of three synthetic mineral pigments: hematite, goethite and magnetite. Materials Research Bulletin 37(6), 1051-1061.
    Ha, P.T., Lindemann, S.R., Shi, L., Dohnalkova, A.C., Fredrickson, J.K., Madigan, M.T. and Beyenal, H. (2017) Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nature communications 8(1), 1-7.
    Harmsen, H.J., Van Kuijk, B.L., Plugge, C.M., Akkermans, A.D., De Vos, W.M. and Stams, A.J. (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. International Journal of Systematic and Evolutionary Microbiology 48(4), 1383-1387.
    Hattori, S. (2008) Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes and Environments 23(2), 118-127.
    Hattori, S., Kamagata, Y., Hanada, S. and Shoun, H. (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. International Journal of Systematic and Evolutionary Microbiology 50(4), 1601-1609.
    Hedderich, R. and Whitman, W.B. (2013) Physiology and biochemistry of the methane-producing Archaea. The Prokaryotes: Prokaryotic Physiology and Biochemistry, 635-662.
    Herlemann, D.P., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J.J. and Andersson, A.F. (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME journal 5(10), 1571-1579.
    Heyer, R., Kohrs, F., Reichl, U. and Benndorf, D. (2015) Metaproteomics of complex microbial communities in biogas plants. Microbial biotechnology 8(5), 749-763.
    Heyer, R., Schallert, K., Siewert, C., Kohrs, F., Greve, J., Maus, I., Klang, J., Klocke, M., Heiermann, M. and Hoffmann, M. (2019) Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants. Microbiome 7(1), 69.
    Heyer, R., Schallert, K., Zoun, R., Becher, B., Saake, G. and Benndorf, D. (2017) Challenges and perspectives of metaproteomic data analysis. Journal of biotechnology 261, 24-36.
    Huang, H.-J., Chen, W.-Y. and Wu, J.-H. (2014) Total protein extraction for metaproteomics analysis of methane producing biofilm: the effects of detergents. International journal of molecular sciences 15(6), 10169-10184.
    Huang, H.-J., Tsai, M.-L., Chen, Y.-W. and Chen, S.-H. (2011) Quantitative shot-gun proteomics and MS-based activity assay for revealing gender differences in enzyme contents for rat liver microsome. Journal of proteomics 74(12), 2734-2744.
    Huang, J., Ma, K., Xia, X., Gao, K. and Lu, Y. (2020) Biochar and magnetite promote methanogenesis during anaerobic decomposition of rice straw. Soil Biology and Biochemistry 143, 107740.
    Hustoft, H.K., Malerod, H., Wilson, S.R., Reubsaet, L., Lundanes, E. and Greibrokk, T. (2012) A critical review of trypsin digestion for LC-MS based proteomics. Integrative Proteomics 1, 73-82.
    Igarashi, K., Miyako, E. and Kato, S. (2020) Direct interspecies electron transfer mediated by graphene oxide-based materials. Frontiers in microbiology 10, 3068.
    Imachi, H., Sekiguchi, Y., Kamagata, Y., Ohashi, A. and Harada, H. (2000) Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl. Environ. Microbiol. 66(8), 3608-3615.
    Jackson, B.E., Bhupathiraju, V.K., Tanner, R.S., Woese, C.R. and McInerney, M.J. (1999) Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Archives of Microbiology 171(2), 107-114.
    Ju, F., Wang, Y. and Zhang, T. (2018) Bioreactor microbial ecosystems with differentiated methanogenic phenol biodegradation and competitive metabolic pathways unraveled with genome-resolved metagenomics. Biotechnology for biofuels 11(1), 135.
    Ju, F. and Zhang, T. (2015) Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. The ISME journal 9(3), 683-695.
    Kühn, W., Fiebig, K., Hippe, H., Mah, R.A., Huser, B.A. and Gottschalk, G. (1983) Distribution of cytochromes in methanogenic bacteria. FEMS microbiology letters 20(3), 407-410.
    Kanehisa, M. and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 28(1), 27-30.
    Keiblinger, K.M., Wilhartitz, I.C., Schneider, T., Roschitzki, B., Schmid, E., Eberl, L., Riedel, K. and Zechmeister-Boltenstern, S. (2012) Soil metaproteomics–Comparative evaluation of protein extraction protocols. Soil Biology and Biochemistry 54, 14-24.
    Kinter, M. and Sherman, N. (2000) The preparation of protein digests for mass spectrometric sequencing experiments. Protein sequencing and identification using tandem mass spectrometry, 147-164.
    Kleerebezem, R., Pol, L.W.H. and Lettinga, G. (1999a) Anaerobic degradation of phthalate isomers by methanogenic consortia. Applied and Environmental Microbiology 65(3), 1152-1160.
    Kleerebezem, R., Pol, L.W.H. and Lettinga, G. (1999b) The role of benzoate in anaerobic degradation of terephthalate. Appl. Environ. Microbiol. 65(3), 1161-1167.
    Kohrs, F., Heyer, R., Magnussen, A., Benndorf, D., Muth, T., Behne, A., Rapp, E., Kausmann, R., Heiermann, M. and Klocke, M. (2014) Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants. Anaerobe 29, 59-67.
    Kuhn, R., Benndorf, D., Rapp, E., Reichl, U., Palese, L.L. and Pollice, A. (2011) Metaproteome analysis of sewage sludge from membrane bioreactors. Proteomics 11(13), 2738-2744.
    Kuroda, K., Hatamoto, M., Nakahara, N., Abe, K., Takahashi, M., Araki, N. and Yamaguchi, T. (2015) Community composition of known and uncultured archaeal lineages in anaerobic or anoxic wastewater treatment sludge. Microbial ecology 69(3), 586-596.
    Kuroda, K., Nobu, M.K., Mei, R., Narihiro, T., Bocher, B.T., Yamaguchi, T. and Liu, W.-T. (2016) A single-granule-level approach reveals ecological heterogeneity in an upflow anaerobic sludge blanket reactor. PloS one 11(12).
    Lü, F., Bize, A., Guillot, A., Monnet, V., Madigou, C., Chapleur, O., Mazéas, L., He, P. and Bouchez, T. (2014) Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity. The ISME journal 8(1), 88-102.
    Lee, J.-Y., Lee, S.-H. and Park, H.-D. (2016) Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors. Bioresource technology 205, 205-212.
    Lee, K., Cho, S., Park, S.H., Heeger, A., Lee, C.-W. and Lee, S.-H. (2006) Metallic transport in polyaniline. Nature 441(7089), 65-68.
    Li, H., Chang, J., Liu, P., Fu, L., Ding, D. and Lu, Y. (2015) Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environmental microbiology 17(5), 1533-1547.
    Li, S.-L., Bai, M.-D., Hsiao, C.-J., Cheng, S.-S. and Nealson, K.H. (2017) A metabolic-activity-detecting approach to life detection: restoring a chemostat from stop-feeding using a rapid bioactivity assay. Bioelectrochemistry 118, 147-153.
    Liu, F., Rotaru, A.-E., Shrestha, P.M., Malvankar, N.S., Nevin, K.P. and Lovley, D.R. (2012) Promoting direct interspecies electron transfer with activated carbon. Energy & Environmental Science 5(10), 8982-8989.
    Liu, F., Rotaru, A.E., Shrestha, P.M., Malvankar, N.S., Nevin, K.P. and Lovley, D.R. (2015) Magnetite compensates for the lack of a pilin‐associated c‐type cytochrome in extracellular electron exchange. Environmental microbiology 17(3), 648-655.
    Liu, W.-T., Marsh, T.L., Cheng, H. and Forney, L.J. (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63(11), 4516-4522.
    Liu, X., Tremblay, P.-L., Malvankar, N.S., Nevin, K.P., Lovley, D.R. and Vargas, M. (2014) A Geobacter sulfurreducens strain expressing Pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe (III) oxide reduction and current production. Appl. Environ. Microbiol. 80(3), 1219-1224.
    Liu, Y. and Whitman, W.B. (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences 1125(1), 171-189.
    Lovley, D., Fraga, J., Blunt‐Harris, E., Hayes, L., Phillips, E. and Coates, J. (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta hydrochimica et hydrobiologica 26(3), 152-157.
    Lovley, D.R. (2012) Long-range electron transport to Fe (III) oxide via pili with metallic-like conductivity, Portland Press Ltd.
    Lovley, D.R. (2017a) Happy together: microbial communities that hook up to swap electrons. The ISME journal 11(2), 327-336.
    Lovley, D.R. (2017b) Syntrophy goes electric: direct interspecies electron transfer. Annual review of microbiology 71, 643-664.
    Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J. and Woodward, J.C. (1996) Humic substances as electron acceptors for microbial respiration. Nature 382(6590), 445.
    Luo, C., Lü, F., Shao, L. and He, P. (2015) Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water research 68, 710-718.
    Lykidis, A., Chen, C.-L., Tringe, S.G., McHardy, A.C., Copeland, A., Kyrpides, N.C., Hugenholtz, P., Macarie, H., Olmos, A. and Monroy, O. (2011) Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium. The ISME journal 5(1), 122-130.
    Müller, B., Sun, L. and Schnürer, A. (2013) First insights into the syntrophic acetate‐oxidizing bacteria–a genetic study. MicrobiologyOpen 2(1), 35-53.
    Malvankar, N.S. and Lovley, D.R. (2012) Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. ChemSusChem 5(6), 1039-1046.
    Malvankar, N.S. and Lovley, D.R. (2014) Microbial nanowires for bioenergy applications. Current Opinion in Biotechnology 27, 88-95.
    Malvankar, N.S., Vargas, M., Nevin, K., Tremblay, P.-L., Evans-Lutterodt, K., Nykypanchuk, D., Martz, E., Tuominen, M.T. and Lovley, D.R. (2015) Structural basis for metallic-like conductivity in microbial nanowires. MBio 6(2), e00084-00015.
    Malvankar, N.S., Vargas, M., Nevin, K.P., Franks, A.E., Leang, C., Kim, B.-C., Inoue, K., Mester, T., Covalla, S.F. and Johnson, J.P. (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nature nanotechnology 6(9), 573-579.
    McGlynn, S.E., Chadwick, G.L., Kempes, C.P. and Orphan, V.J. (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526(7574), 531-535.
    McInerney, M., Bryant, M., Hespell, R. and Costerton, J. (1981) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41(4), 1029-1039.
    McInerney, M., Sieber, J. and Gunsalus, R. (2011) Genomic sequences reveal systems required to produce hydrogen and formate, plus other hallmarks of the syntrophic lifestyle. Microbe Mag 6, 479-485.
    McInerney, M.J., Bryant, M.P. and Pfennig, N. (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Archives of Microbiology 122(2), 129-135.
    McNulty, N.P., Wu, M., Erickson, A.R., Pan, C., Erickson, B.K., Martens, E.C., Pudlo, N.A., Muegge, B.D., Henrissat, B. and Hettich, R.L. (2013) Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS biology 11(8).
    Mei, R., Nobu, M.K., Narihiro, T., Yu, J., Sathyagal, A., Willman, E. and Liu, W.-T. (2018) Novel Geobacter species and diverse methanogens contribute to enhanced methane production in media-added methanogenic reactors. Water research 147, 403-412.
    Miller, D., Bryant, J., Madsen, E. and Ghiorse, W. (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65(11), 4715-4724.
    Morris, B.E., Henneberger, R., Huber, H. and Moissl-Eichinger, C. (2013) Microbial syntrophy: interaction for the common good. FEMS microbiology reviews 37(3), 384-406.
    Mountfort, D., Brulla, W., Krumholz, L.R. and Bryant, M. (1984) Syntrophus buswellii gen. nov., sp. nov.: a benzoate catabolizer from methanogenic ecosystems. International Journal of Systematic and Evolutionary Microbiology 34(2), 216-217.
    Narihiro, T., Nobu, M.K., Bocher, B.T., Mei, R. and Liu, W.T. (2018) Co‐occurrence network analysis reveals thermodynamics‐driven microbial interactions in methanogenic bioreactors. Environmental microbiology reports 10(6), 673-685.
    Narihiro, T., Nobu, M.K., Mei, R. and Liu, W.-T. (2015) Anaerobic Biotechnology: Environmental Protection and Resource Recovery, pp. 31-48, World Scientific.
    Nobu, M.K., Narihiro, T., Hideyuki, T., Qiu, Y.L., Sekiguchi, Y., Woyke, T., Goodwin, L., Davenport, K.W., Kamagata, Y. and Liu, W.T. (2015a) The genome of Syntrophorhabdus aromaticivorans strain UI provides new insights for syntrophic aromatic compound metabolism and electron flow. Environmental microbiology 17(12), 4861-4872.
    Nobu, M.K., Narihiro, T., Liu, M., Kuroda, K., Mei, R. and Liu, W.T. (2017) Thermodynamically diverse syntrophic aromatic compound catabolism. Environmental microbiology 19(11), 4576-4586.
    Nobu, M.K., Narihiro, T., Rinke, C., Kamagata, Y., Tringe, S.G., Woyke, T. and Liu, W.-T. (2015b) Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. The ISME journal 9(8), 1710-1722.
    Owen, W., Stuckey, D., Healy Jr, J., Young, L. and McCarty, P. (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water research 13(6), 485-492.
    Park, C.Y., Klammer, A.A., Käll, L., MacCoss, M.J. and Noble, W.S. (2008) Rapid and accurate peptide identification from tandem mass spectra. Journal of proteome research 7(7), 3022-3027.
    Park, J.-H., Park, J.-H., Seong, H.J., Sul, W.J., Jin, K.-H. and Park, H.-D. (2018) Metagenomic insight into methanogenic reactors promoting direct interspecies electron transfer via granular activated carbon. Bioresource technology 259, 414-422.
    Patel, V.J., Thalassinos, K., Slade, S.E., Connolly, J.B., Crombie, A., Murrell, J.C. and Scrivens, J.H. (2009) A comparison of labeling and label-free mass spectrometry-based proteomics approaches. Journal of proteome research 8(7), 3752-3759.
    Perkins, D.N., Pappin, D.J., Creasy, D.M. and Cottrell, J.S. (1999) Probability‐based protein identification by searching sequence databases using mass spectrometry data. ELECTROPHORESIS: An International Journal 20(18), 3551-3567.
    Perkins, S., Scalfone, N. and Angenent, L. (2011) Comparative 16S rRNA gene surveys of granular sludge from three upflow anaerobic bioreactors treating purified terephthalic acid (PTA) wastewater. Water Science and Technology 64(7), 1406-1412.
    Qian, X., Mester, T., Morgado, L., Arakawa, T., Sharma, M.L., Inoue, K., Joseph, C., Salgueiro, C.A., Maroney, M.J. and Lovley, D.R. (2011) Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe (III) reduction in Geobacter sulfurreducens. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1807(4), 404-412.
    Qiu, Y.-L., Hanada, S., Ohashi, A., Harada, H., Kamagata, Y. and Sekiguchi, Y. (2008) Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen. Appl. Environ. Microbiol. 74(7), 2051-2058.
    Rotaru, A.-E., Calabrese, F., Stryhanyuk, H., Musat, F., Shrestha, P.M., Weber, H.S., Snoeyenbos-West, O.L., Hall, P.O., Richnow, H.H. and Musat, N. (2018) Conductive particles enable syntrophic acetate oxidation between Geobacter and Methanosarcina from coastal sediments. MBio 9(3), e00226-00218.
    Rotaru, A.-E., Shrestha, P.M., Liu, F., Markovaite, B., Chen, S., Nevin, K.P. and Lovley, D.R. (2014a) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl. Environ. Microbiol. 80(15), 4599-4605.
    Rotaru, A.-E., Shrestha, P.M., Liu, F., Shrestha, M., Shrestha, D., Embree, M., Zengler, K., Wardman, C., Nevin, K.P. and Lovley, D.R. (2014b) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy & Environmental Science 7(1), 408-415.
    Rotaru, A.-E., Shrestha, P.M., Liu, F., Ueki, T., Nevin, K., Summers, Z.M. and Lovley, D.R. (2012) Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens. Appl. Environ. Microbiol. 78(21), 7645-7651.
    Rotaru, A.-E., Woodard, T.L., Nevin, K.P. and Lovley, D.R. (2015) Link between capacity for current production and syntrophic growth in Geobacter species. Frontiers in microbiology 6, 744.
    Roy, F., Samain, E., Dubourguier, H.C. and Albagnac, G. (1986) Synthrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Archives of Microbiology 145(2), 142-147.
    Sarkar, O., Butti, S.K. and Mohan, S.V. (2018) Waste Biorefinery, pp. 203-218, Elsevier.
    Schink, B. (1984) Fermentation of 2, 3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C 2 compounds. Archives of Microbiology 137(1), 33-41.
    Schink, B. (1985) Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Archives of Microbiology 142(3), 295-301.
    Schink, B. (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61(2), 262-280.
    Schink, B., Montag, D., Keller, A. and Müller, N. (2017) Hydrogen or formate: Alternative key players in methanogenic degradation. Environmental microbiology reports 9(3), 189-202.
    Schink, B. and Stams, A.J. (2013) Syntrophism among prokaryotes, Springer.
    Schink, B. and Stieb, M. (1983) Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov. Appl. Environ. Microbiol. 45(6), 1905-1913.
    Schmitz, R.A., Daniel, R., Deppenmeier, U. and Gottschalk, G. (2013) The Anaerobic Way of Life. The Prokaryotes: Prokaryotic Communities and Ecophysiology, 259-273.
    Schnürer, A., Schink, B. and Svensson, B.H. (1996) Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. International Journal of Systematic and Evolutionary Microbiology 46(4), 1145-1152.
    Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. and Harada, H. (2000) Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. International Journal of Systematic and Evolutionary Microbiology 50(2), 771-779.
    Shrestha, P.M. and Rotaru, A.-E. (2014) Plugging in or going wireless: strategies for interspecies electron transfer. Frontiers in microbiology 5, 237.
    Shrestha, P.M., Rotaru, A.-E., Summers, Z.M., Shrestha, M., Liu, F. and Lovley, D.R. (2013a) Transcriptomic and genetic analysis of direct interspecies electron transfer. Appl. Environ. Microbiol. 79(7), 2397-2404.
    Shrestha, P.M., Rotaru, A.E., Aklujkar, M., Liu, F., Shrestha, M., Summers, Z.M., Malvankar, N., Flores, D.C. and Lovley, D.R. (2013b) Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Environmental microbiology reports 5(6), 904-910.
    Sieber, J.R., McInerney, M.J., Müller, N., Schink, B., Gunsalus, R.P. and Plugge, C.M. (2018) Methanogens: Syntrophic Metabolism. Biogenesis of Hydrocarbons, 1-31.
    Stams, A.J. (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 66(1-3), 271-294.
    Stams, A.J., De Bok, F.A., Plugge, C.M., Van Eekert, M.H., Dolfing, J. and Schraa, G. (2006) Exocellular electron transfer in anaerobic microbial communities. Environmental microbiology 8(3), 371-382.
    Straub, K.L., Benz, M. and Schink, B. (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS microbiology ecology 34(3), 181-186.
    Strycharz, S.M., Glaven, R.H., Coppi, M.V., Gannon, S.M., Perpetua, L.A., Liu, A., Nevin, K.P. and Lovley, D.R. (2011) Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80(2), 142-150.
    Summers, Z.M., Fogarty, H.E., Leang, C., Franks, A.E., Malvankar, N.S. and Lovley, D.R. (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330(6009), 1413-1415.
    Tanner, S., Shu, H., Frank, A., Wang, L.-C., Zandi, E., Mumby, M., Pevzner, P.A. and Bafna, V. (2005) InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Analytical chemistry 77(14), 4626-4639.
    Thauer, R.K., Kaster, A.-K., Seedorf, H., Buckel, W. and Hedderich, R. (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Reviews Microbiology 6(8), 579-591.
    Thiele, J.H. and Zeikus, J.G. (1988) Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl. Environ. Microbiol. 54(1), 20-29.
    Vargas, M., Malvankar, N.S., Tremblay, P.-L., Leang, C., Smith, J.A., Patel, P., Synoeyenbos-West, O., Nevin, K.P. and Lovley, D.R. (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4(2), e00105-00113.
    Wallrabenstein, C., Gorny, N., Springer, N., Ludwig, W. and Schink, B. (1995a) Pure culture of Syntrophus buswellii, definition of its phylogenetic status, and description of Syntrophus gentianae sp. nov. Systematic and applied microbiology 18(1), 62-66.
    Wallrabenstein, C., Hauschild, E. and Schink, B. (1995b) Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Archives of Microbiology 164(5), 346-352.
    Wang, G., Gao, X., Li, Q., Zhao, H., Liu, Y., Wang, X.C. and Chen, R. (2019) Redox-based electron exchange capacity of biowaste-derived biochar accelerates syntrophic phenol oxidation for methanogenesis via direct interspecies electron transfer. Journal of hazardous materials, 121726.
    Westerholm, M., Roos, S. and Schnürer, A. (2010) Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS microbiology letters 309(1), 100-104.
    Westerholm, M., Roos, S. and Schnürer, A. (2011) Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes. Systematic and applied microbiology 34(4), 260-266.
    Wilmes, P. and Bond, P.L. (2004) The application of two‐dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environmental microbiology 6(9), 911-920.
    Wu, J.-H., Liu, W.-T., Tseng, I.-C. and Cheng, S.-S. (2001a) Characterization of a 4-methylbenzoate-degrading methanogenic consortium as determined by small-subunit rDNA sequence analysis. Journal of bioscience and bioengineering 91(5), 449-455.
    Wu, J.-H., Liu, W.-T., Tseng, I.-C. and Cheng, S.-S. (2001b) Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge systemThe GenBank accession numbers for the sequences obtained in this work are AF229774–AF229793. Microbiology 147(2), 373-382.
    Wu, J.-H., Wu, F.-Y., Chuang, H.-P., Chen, W.-Y., Huang, H.-J., Chen, S.-H. and Liu, W.-T. (2013) Community and proteomic analysis of methanogenic consortia degrading terephthalate. Appl. Environ. Microbiol. 79(1), 105-112.
    Xiao, L., Liu, F., Lichtfouse, E., Zhang, P., Feng, D. and Li, F. (2020) Methane production by acetate dismutation stimulated by Shewanella oneidensis and carbon materials: An alternative to classical CO2 reduction. Chemical Engineering Journal 389, 124469.
    Yan, W., Sun, F., Liu, J. and Zhou, Y. (2018) Enhanced anaerobic phenol degradation by conductive materials via EPS and microbial community alteration. Chemical Engineering Journal 352, 1-9.
    Zhang, J. and Lu, Y. (2016) Conductive Fe3O4 nanoparticles accelerate syntrophic methane production from butyrate oxidation in two different lake sediments. Frontiers in microbiology 7, 1316.
    Zhao, H., Yang, D., Woese, C.R. and Bryant, M.P. (1990) Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. International Journal of Systematic and Evolutionary Microbiology 40(1), 40-44.
    Zhao, Z., Li, Y., Yu, Q. and Zhang, Y. (2018) Ferroferric oxide triggered possible direct interspecies electron transfer between Syntrophomonas and Methanosaeta to enhance waste activated sludge anaerobic digestion. Bioresource technology 250, 79-85.
    Zhuang, L., Ma, J., Yu, Z., Wang, Y. and Tang, J. (2018) Magnetite accelerates syntrophic acetate oxidation in methanogenic systems with high ammonia concentrations. Microbial biotechnology 11(4), 710-720.
    Zhuang, L., Tang, J., Wang, Y., Hu, M. and Zhou, S. (2015) Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation. Journal of hazardous materials 293, 37-45.
    Zybailov, B.L., Florens, L. and Washburn, M.P. (2007) Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors. Molecular BioSystems 3(5), 354-360.

    下載圖示
    2025-08-01公開
    QR CODE