簡易檢索 / 詳目顯示

研究生: 林譽洋
Lin, Yu-Yang
論文名稱: 果園自動割草機器人之研製
Development of an automatic mowing robot in orchard
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 66
中文關鍵詞: 自動割草機器人果園崎嶇地形
外文關鍵詞: automatic orchard mowing robot, orchard, rough terrain
相關次數: 點閱:139下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計一台能夠應用於坡地及濕滑草地的果園自動割草機器人。果園環境中,地面經常因澆灌形成部分泥濘,且較鬆軟的土地則與輪胎之摩擦係數較低,容易造成輪胎空轉,為了適應類似的地形,機器人以大腳車的機構作為設計參考,搭配較長的懸吊行程,以應對較為崎嶇之地形。
    機器人以Arduino Mega 2560作為控制中樞,用以處理馬達控制訊號及感測器資訊,並以Pix32飛控板搭載PX4韌體,在筆電上使用
    Q groundcontrol軟體進行機器人路徑規劃。
    使用設計之割草部件進行割草,透過行星齒輪與刀具結合產生低速雙向旋轉之刀具,藉由刀刃交錯時,類似剪刀切割的方式,以達到較低能耗與安全性之目的。實驗結果顯示本論文設計之割草機構能夠有效割除雜草。

    This thesis presents an automatic orchard mowing robot which can be used on slopes and slippery environments for grass mowing. The ground of slippery grass has a small frictional coefficient for the tires of the robot; thus, it is likely to cause the tires to skid. In order to adapt orchard’s rough terrains, the robot uses a monster truck mechanism as a design reference. The long suspension stroke mechanism enables the robot overcome the rough terrain more easily.
    The robot uses Arduino Mega 2560 as the control center to process motor control signals and sensor information, and uses a Pix32 flight control board with PX4 firmware for remote control. By using the data transfer module (HT0X), a user can use the QGroundControl (QGC) software on the laptop to execute the robot path planning task.
    In order to lower the energy consumption and to enhance mowing safety when mowing, a planetary gear set is combined with the cutting blades to produce a low-speed bidirectional rotating cutter. The designed mechanism mows similarly to scissor cutting when the blades are staggered for low-speed cutting to reduce safety concerns due to high-speed splashing. Experimental results show that the present robot mows grass successfully.

    第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 文獻回顧 2 1-3-1 割草背景環境 2 1-3-2 機器人設計考量 3 1-3-3 割草機構設計文獻回顧 7 1-3-4 除草方式 12 第二章 軟硬體系統架構與介紹 17 2-1 系統架構 17 2-2 硬體介紹 19 2-2-1 飛控板 20 2-2-2 微控器 21 2-2-3 GPS模組 22 2-2-4 直流降壓模組 23 2-2-5 直流馬達 23 2-2-6 馬達驅動模組 24 2-2-7 電源模組 24 2-2-8 遙控器 25 2-2-9 接收器 25 2-2-10 數傳模組 26 2-2-11 電壓顯示模組 26 2-3 周邊電路介紹 去彈跳電路 27 2-4 軟韌體介紹 QGroundControl (QGC) 28 第三章 機構設計 30 3-1 機構硬體 30 3-1-1 設計之選擇 30 3-1-2機器人機構設計與模擬 31 3-2 切割工具構型設計 37 3-3 動力配置 40 3-4 碰撞偵測與排障 43 第四章 實驗結果與討論 45 4-1 實驗環境 45 4-2 行進測試 45 4-3 割草測試 49 4-4 爬坡測試 53 4-5 避障測試 56 4-6 自動測試 57 第五章 結論與建議 60 5-1 結論 60 5-2 建議 61 參考文獻 62

    [1] C. Hsieh, Y. Lin, T. Lin, Y. Lin and M. Chiang, "Apply Kinect and Zenbo to develop interactive health enhancement system," 2019 8th International Conference on Innovation, Communication and Engineering (ICICE), pp. 165-168, doi: 10.1109/ICICE49024.2019.9117476.
    [2] C. Chen, B. Chen, S. Tseng and J. Wang, "Design and implementation of sentence similarity matching and multimedia feedback for intelligent Pharmacy on Zenbo robot," International Conference on Orange Technologies (ICOT), pp. 1-4, 2018 doi: 10.1109/ICOT.2018.8705793.
    [3] P. Theophile, E. Misse, M. P. Theophile, P. Almond, and A. Werner, "Developing automated and autonomous weed control methods on pipfruit orchards in New Zealand," Licoln University New Zealand reasearch proposal, June, 2019.
    [4] C. Harris, J. Madonick, and T. R. Hartka, "Lawn mower injuries presenting to the emergency department: 2005 to 2015," Am. J. Emerg. Med., vol. 36, no. 9, pp. 1565–1569, Sept. 2018.
    [5] R. W. Hicks II and E. L. Hall, "Survey of robot lawn mowers," in Intelligent Robots and Computer Vision XIX: Algorithms, Techniques, and Active Vision, vol. 4197, no. 11, pp. 262–269, 2000.
    [6] D. Ball, "Robotics for sustainable broad-acre agriculture,"in Springer Tracts in Advanced Robotics, vol. 105, pp. 439–453, 2015.
    [7] Väljaots Eero, Raivo Sell, and Mati Kaeeli, "Motion and energy efficiency parameters of the unmanned ground vehicle," Solid State Phenomena, vol. 220–221, Trans Tech Publications, Ltd., Jan. 2015, pp. 934–939. Crossref, doi:10.4028/www.scientific.net/ssp.220-221.934.
    [8] Gabriel J. Wilfong, 2019, Modeling and analysis of ground-based autonomous agricultural vehicles, Purdue University graduate school thesis. https://doi.org/10.25394/PGS.9108392.v1
    [9] J. H. Zhou, J. Q. Zhou, Y. S. Zheng, and B. Kong, "Research on path planning algorithm of intelligent mowing robot used in large airport lawn," in Proceedings of 2016 IEEE International Conference on Information System and Artificial Intelligence, pp.375–379, 2016.
    [10] M. Effati, J. S. Fiset, and K. Skonieczny, "Considering slip-track for energy-efficient paths of skid-steer rovers," Journal of Intelligent & Robotic Systems, Springer Nature, 2019, https://doi.org/10.1007/s10846-020-01173-5.
    [11] K.-H. Hsia, Y.-S. Huang, K.-L. Su, and J.-H. Guo, "Mechanism of autonomous mowing robot for long grass," International Conference on Artificial Life and Robotics (ICAROB 2017), Jan. 19-22, Seagaia Convention Center, Miyazaki, Japan,pp.79-82, 2017.
    [12] L. Fu, L. Li, Y. Chen, and S. Chien, 2020, Modeling and design of an electrical mower deck control system, Purdue University Graduate School thesis.
    [13] Y. Yamazaki, "Remote control console of mowing robot with image monitor," in MHS 2017 - 28th International Symposium on Micro-NanoMechatronics and Human Science, vol.2018-January, pp. 1–4, 2018.
    [14] D. A. Aponte-Roa, X. Collazo, M. Goenaga, A. A.Espinoza, andK.Vazquez, "Development and evaluation of a remote controlled electric lawn mower," IEEE 9th Annual Computing and Communication Workshop and Conference, CCWC , pp. 90–94, 2019.
    [15] C. M. Wu and T. Y. Yu, "Implementation of remote control a mower robot," in Proceedings of 2019 IEEE International Conference of Intelligent Applied Systems on Engineering, ICIASE 2019, pp. 120–123.
    [16] R. Suzuki and Y. Uchida, "Characteristics of a mower robot with swing mower mechanism by simulation," In Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2018), Volume 2, pages 307-312.
    [17] Simons, A., Pouliwe, W., Quartey, G, "Design and finite element analysis of a manually operated lawn mower", Ghana Journal of Technology, Vol. 2, No. 1, pp. 1-6, Sept. 2017.
    [18] M. G. S. B. Shinde Vaibhav Tanaji, Chavan Swaroop Chandrakant, Parulekar Sharvarish Shashikant, Gavali Omkar Raju, Automated Mower Robo, KIT’s College of Engineering, Kolhapur Thesis, Maharashtra, India, 2018.
    [19] F. Langsenkamp, M. Kohlbrecher, W. Strothmann, and A. Ruckelshausen, "Tube Stamp for mechanical intra-row individual plant weed control ,"8th World Congress of CIGR, pp. 1-11, Sep. 2014.
    [20] N. Nagarajan, N. S. Sivakumar, and R. Saravanan, "Design and fabrication of lawn mower," Asian Journal of Applied Science and Technology (AJAST) Volume 1, Issue 4, Pages 50-54, May, 2017.
    [21] Y. Iwano, T. Hasegawa, A. Tanaka, and K. Iizuka, "Development of the trimmer-type mowing system against a slope,"in International Conference on Advanced Mechatronic Systems, ICAMechS, vol. 0, pp. 23–28, 2016.
    [22] J. Škrabala, Adrián Hajducik, Štefan Medvecky and František Brumercik, "Optimalisation of the blade movement of the mower," Automated guided vehicle such as mobile technology carrier View project Research and optimization of driver monitoring options using sensors based on bionic principles View project,” Sci. J. Silesian Univ. Technol. Ser. Transp. Zesz. Nauk. Politech. Śląskiej. Ser. Transp., vol. 105, pp.209–3324, 2019.
    [23] J. Chleboun, P. Kus, P. Pˇrikryl, M. Rozloznık, K. Segeth, J. Sıstek, T. Vejchodsk´, "The dynamics of the drum mower blade," Programs and Algorithms of Numerical Mathematics. Proceedings of Seminar. Hejnice, June 24-29, 2018. Institute of Mathematics CAS, Prague, pp. 7-14, DOI: 10.21136/panm.2018.01
    [24] Q. Jiang and L.Wang, "Research on obstacle avoidance system and path planning of unmanned ground vehicle based on PX4," Dyn. Syst. Control, vol. 8, no. 2, pp. 167–180, 2019.
    [25] T. Guo, J. Guo, B. Huang, and H. Peng, "Power consumption of tracked and wheeled small mobile robots on deformable terrains–model and experimental validation," Mech. Mach. Theory, vol. 133, pp. 347–364, Mar.2019.
    [26] J. Y. Wong, C. F. Chiang, "A general theory for skid steering of tracked vehicles on firm ground," proceeding of the Institution of Mechanical Engineers, pp.343-355, 2001.
    [27] R. Galati and G. Reina, "Terrain awareness using a tracked skid-steering vehicle with passive independent suspensions," Front. Robot. AI, vol. 6, no. June, p. 46, Jun.2019.
    [28] J. H. Jang, J. H. Suh, H. C. Kong, S. I. Lee, and D. M. Kim, "Design of a moving substructure for an armored gobot for complex disasters," in 2019 16th International Conference on Ubiquitous Robots, pp. 478–482, 2019.
    [29] R. Dveges, F. Durovsky, and V. Fedak, "Skid steering of robotic vehicle for autonomous applications," International Conference on Electical Drives and Power Electronics, vol. 2019-September, pp. 335–341, 2019.
    [30] 江炳賢, 2013, 智慧型割草機器人, 國立成功大學碩士班論文
    [31] C. R. Tuck, M. J. O’Dogherty, D. E. Baker, and G. E. Gale, "Laboratory studies of the performance characteristics of mowing mechanisms," J. Agric. Eng. Res., vol. 50, no. C, pp. 61–80, Sep. 1991.
    [32] H. Gan , "Effects of three cutting blade designs on energy consumption during mowing-conditioning of Miscanthus Giganteus," Biomass and Bioenergy, vol. 109, pp. 166–171, Feb.2018.
    [33] J. Čedík, M. Pexa, and R. Pražan, "Effect of rake angle and cutting speed on energy demands of mulcher with vertical axis of rotation," Agron. Res., vol. 15, no. 4, pp. 1540–1549, 2017.
    [34] 網頁https://seagointernational.com/product/power-rotary-scissors, July, 2020.
    [35] 網頁https://makita.com.tw/product/um600-%e5%85%85%e9%9b%bb%e5%bc%8f%e8%8d%89%e5%9d%aa%e4%bf%ae%e5%89%aa%e6%a9%9f/, July, 2020.
    [36]網頁http://www.shayangye.com/product-inner.aspx?f=s&i=118, July, 2020.

    下載圖示
    2022-07-29公開
    QR CODE