簡易檢索 / 詳目顯示

研究生: 莊昱呈
Chuang, Yu-Cheng
論文名稱: 拉蓋多爾-沃爾泰拉自我回歸模型用於阿茲海默症、輕度認知障礙和健康對照組的分類
Laguerre-Volterra Autoregressive Model for Alzheimer's Disease, Mild Cognitive Impairment, and Healthy Controls Classification
指導教授: 游本寧
Yu, Pen-Ning
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 73
中文關鍵詞: 阿茲海默症輕度認知障礙自我回歸模型拉蓋多爾-沃爾泰拉自我回歸模型主要動態模式機器學習分類器
外文關鍵詞: Alzheimer's disease, Mild cognitive impairment, Laguerre-Volterra autoregressive model, Classifiers, Lasso logistic regression
相關次數: 點閱:41下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 阿茲海默症(Alzheimer's disease, AD)是一種非正常老化的大腦疾病,患有此疾病的患者是無法被根治的。輕度認知障礙(Mild Cognitive Impairment, MCI)常被喻為失智症與健康者之間的過渡期,提早接受治療是有機會完全痊癒的,然而MCI是不容易被診斷的,為了讓醫師更容易診斷,本研究目的為應用機器學習方法以分辨AD、MCI與健康對照組(Health Control, HC)的二元分類器。首先,本研究透過留一參與者交叉驗證選取超參數,比較自我回歸(Autoregressive, AR)模型、線性與非線性的拉蓋多爾-沃爾泰拉自我回歸(Laguerre-Volterra Autoregressive, LVAR)模型三種特徵擷取方法在AD-HC、MCI-HC以及AD-MCI三種二元分類器的性能表現。實驗結果顯示,以非線性的LVAR模型的核為特徵,在AD-HC以及MCI-HC這兩組分類器中可以得到最高的準確率分別為0.74以及0.57,在AD-MCI分類器中,以AR模型的係數為特徵,可得出最高準確率為0.66;其次,本研究以主要動態模式(Principal Dynamic Modes, PDMs)分析,線性化平均之相關的非線性函數(Associated Nonlinear Functions, ANFs)斜率作為分類器分類的指標。實驗結果顯示,在這三種二元分類器的最高準確率落在0.55至0.6之間。本研究結論為非線性的LVAR核作為分類器特徵可提升分類器性能,此外透過PDMs分析利用線性化平均的ANFs斜率作為分類器的指標,透過delta、low alpha和low beta頻段的global PDMs所對應的ANFs作為分類器分類的指標是有利於分類器的分類。

    Three classifiers are established in this study, i.e. Alzheimer's Disease (AD) vs. Healthy Controls (HC), Mild Cognitive Impairment (MCI) vs. Healthy Controls (HC), and AD vs. MCI, by using Lasso logistic regression. Moreover, several different features such as coefficients from the autoregressive (AR) model, kernels of linear Laguerre-Volterra AR (LVAR) model, and kernels of nonlinear LVAR model are applied for comparing the classifiers' performance. Additionally, the use of slopes from associated nonlinear functions (ANFs) in principal dynamic modes (PDMs) analysis as indicators for classification in all three classifiers is also explored. The results of this study indicate that using nonlinear LVAR model kernels as features in the classifiers significantly increases the classification performance for AD-HC and MCI-HC categories. Furthermore, classifiers built on the slopes of three specific global PDMs, corresponding to the delta, alpha, and low beta frequency bands, achieve accuracy ranging from 0.55 to 0.62 across all three classifiers.

    摘要 i 誌謝 xi 目錄 xii 表目錄 xv 圖目錄 xvi 符號表 xviii 第一章 緒論 1 1.1 前言 1 1.2 阿茲海默症與輕度認知障礙 1 1.3 腦電圖(Electroencephalography, EEG) 3 1.4 文獻回顧 3 1.5 研究動機與目的 6 第二章 方法 7 2.1 參與者 9 2.2 量測腦電圖訊號的流程 10 2.3 腦電圖訊號預處理 11 2.4 特徵擷取 11 2.4.1 自我回歸模型(Autoregressive model, AR model) 11 2.4.2 拉蓋多爾-沃爾泰拉自我回歸模型(Laguerre-Volterra Autoregressive model, LVAR model) 12 2.5 分類器流程 15 2.5.1 Lasso邏輯回歸 (Lasso logistic regression) 17 2.5.2 留一參與者交叉驗證(Leave-One-Participant-Out Cross-Validation, LOPO-CV) 18 2.5.3 超參數選取 19 2.6 排列特徵重要性(Permutation Feature Importance, PFI)分析 23 2.7 統計分析 23 2.7.1 二項檢定(Binomial test) 24 2.7.2 麥克尼馬卡方檢定(McNemar's test) 24 2.8 主要動態模式 (Principal Dynamic Modes, PDMs) 26 2.9 基於ANFs斜率的分類器流程 28 2.9.1 超參數選取 30 第三章 結果 31 3.1 透過LOPO-CV選取超參數比較三種特徵擷取方法在三種分類器的性能表現 31 3.1.1 AR模型係數作為分類器特徵 31 3.1.2 線性的LVAR模型的核作為分類器特徵 34 3.1.3 非線性的LVAR模型的核作為分類器特徵 36 3.1.4 總結三種特徵擷取方法在三種分類器的性能表現 39 3.1.5 Lasso邏輯回歸所選取有用特徵在6個頭皮區域的分布 39 3.1.6 排列特徵重要性分析 42 3.1.7 統計分析 44 3.2 透過AIC選取超參數比較兩種特徵擷取方法在三種分類器的性能表現 49 3.2.1 非線性的VAR模型的核作為分類器特徵 50 3.2.2 非線性的LVAR模型的核作為分類器特徵 51 3.2.3 總結兩種特徵擷取方法在三種分類器的性能表現 51 3.2.4 統計分析 52 3.3 比較4種系統透過PDM分析在三種分類器的性能表現 54 3.3.1 O1-F3系統 54 3.3.2 O1-F4系統 59 3.3.3 O2-F3系統 61 3.3.4 O2-F4系統 62 3.3.5 總結四種系統在三種分類器的性能表現 63 第四章討論與結論 65 4.1 討論與結論 65 4.2 未來展望 69 參考文獻 71

    [1] J. J. Manly, M.-X. Tang, N. Schupf, Y. Stern, J.-P. G. Vonsattel, and R. Mayeux, “Frequency and course of mild cognitive impairment in a multiethnic community,” Ann Neurol., vol. 63, no. 4, pp. 494–506, Apr. 2008, doi: 10.1002/ana.21326.
    [2] R. C. Petersen, “Mild Cognitive Impairment,” 2016.
    [3] T.-T. Trinh, C.-F. Tsai, Y.-T. Hsiao, C.-Y. Lee, C.-T. Wu, and Y.-H. Liu, “Identifying Individuals With Mild Cognitive Impairment Using Working Memory-Induced Intra-Subject Variability of Resting-State EEGs,” Front. Comput. Neurosci., vol. 15, p. 700467, Aug. 2021, doi: 10.3389/fncom.2021.700467.
    [4] P.-N. Yu, C. Y. Liu, C. N. Heck, T. W. Berger, and D. Song, “A sparse multiscale nonlinear autoregressive model for seizure prediction,” J. Neural Eng., vol. 18, no. 2, p. 026012, Apr. 2021, doi: 10.1088/1741-2552/abdd43.
    [5] Y. Kang, J. Escudero, D. Shin, E. Ifeachor, and V. Marmarelis, “Principal Dynamic Mode Analysis of EEG Data for Assisting the Diagnosis of Alzheimer’s Disease,” IEEE J. Transl. Eng. Health Med., vol. 3, pp. 1–10, 2015, doi: 10.1109/JTEHM.2015.2401005.
    [6] V. Z. Marmarelis, “Identification of nonlinear biological systems using laguerre expansions of kernels,” Ann Biomed Eng, vol. 21, no. 6, pp. 573–589, Nov. 1993, doi: 10.1007/BF02368639.
    [7] G. Valenza, L. Citi, E. P. Scilingo, and R. Barbieri, “Point-Process Nonlinear Models With Laguerre and Volterra Expansions: Instantaneous Assessment of Heartbeat Dynamics,” IEEE Trans. Signal Process., vol. 61, no. 11, pp. 2914–2926, Jun. 2013, doi: 10.1109/TSP.2013.2253775.
    [8] D. Song, R. H. M. Chan, V. Z. Marmarelis, R. E. Hampson, S. A. Deadwyler, and T. W. Berger, “Nonlinear Dynamic Modeling of Spike Train Transformations for Hippocampal-Cortical Prostheses,” IEEE Trans. Biomed. Eng., vol. 54, no. 6, pp. 1053–1066, Jun. 2007, doi: 10.1109/TBME.2007.891948.
    [9] D. Song, R. H. M. Chan, V. Z. Marmarelis, R. E. Hampson, S. A. Deadwyler, and T. W. Berger, “Nonlinear modeling of neural population dynamics for hippocampal prostheses,” Neural Networks, vol. 22, no. 9, pp. 1340–1351, Nov. 2009, doi: 10.1016/j.neunet.2009.05.004.
    [10] D. Song et al., “Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions,” Journal of computational neuroscience, vol. 35, pp. 335–357, 2013.
    [11] I. A. Langmoen and P. Andersen, “The hippocampal slice in vitro. A description of the technique and some examples of the opportunities it offers,” Electrophysiology of isolated mammalian CNS preparations, pp. 51–105, 1981.
    [12] Z. Sankari, H. Adeli, and A. Adeli, “Intrahemispheric, interhemispheric, and distal EEG coherence in Alzheimer’s disease,” Clinical Neurophysiology, vol. 122, no. 5, pp. 897–906, May 2011, doi: 10.1016/j.clinph.2010.09.008.
    [13] N. V. Ponomareva, G. I. Korovaitseva, and E. I. Rogaev, “EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer disease,” Neurobiology of Aging, vol. 29, no. 6, pp. 819–827, Jun. 2008, doi: 10.1016/j.neurobiolaging.2006.12.019.
    [14] G. Adler, S. Brassen, and A. Jajcevic, “EEG coherence in Alzheimer’s dementia,” J Neural Transm, vol. 110, no. 9, pp. 1051–1058, Sep. 2003, doi: 10.1007/s00702-003-0024-8.
    [15] B. Jelles, Ph. Scheltens, W. M. Van Der Flier, E. J. Jonkman, F. H. L. Da Silva, and C. J. Stam, “Global dynamical analysis of the EEG in Alzheimer’s disease: Frequency-specific changes of functional interactions,” Clinical Neurophysiology, vol. 119, no. 4, pp. 837–841, Apr. 2008, doi: 10.1016/j.clinph.2007.12.002.
    [16] “關於失智症-認識失智症.” http://www.tada2002.org.tw/About/IsntDementia (accessed Jul. 15, 2023).
    [17] “| MoCA 臨床數據.” https://mocacognition.com/moca-clinic-data/ (accessed Jul. 15, 2023).
    [18] https://www.facebook.com/verywell, “Montreal Cognitive Assessment (MoCA) Test for Dementia,” Verywell Health. https://www.verywellhealth.com/alzheimers-and-montreal-cognitive-assessment-moca-98617 (accessed Jul. 15, 2023).
    [19] C. Lehmann et al., “Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG),” Journal of Neuroscience Methods, vol. 161, no. 2, pp. 342–350, Apr. 2007, doi: 10.1016/j.jneumeth.2006.10.023.
    [20] B. Oltu, M. F. Akşahin, and S. Kibaroğlu, “A novel electroencephalography based approach for Alzheimer’s disease and mild cognitive impairment detection,” Biomedical Signal Processing and Control, vol. 63, p. 102223, Jan. 2021, doi: 10.1016/j.bspc.2020.102223.
    [21] E. Parvinnia, M. Sabeti, M. Zolghadri Jahromi, and R. Boostani, “Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm,” Journal of King Saud University - Computer and Information Sciences, vol. 26, no. 1, pp. 1–6, Jan. 2014, doi: 10.1016/j.jksuci.2013.01.001.
    [22] D. T. Westwick and R. E. Kearney, Identification of nonlinear physiological systems, vol. 7. John Wiley & Sons, 2003.
    [23] D. Song and T. W. Berger, “Identification of Nonlinear Dynamics in Neural Population Activity,” in Statistical Signal Processing for Neuroscience and Neurotechnology, Elsevier, 2010, pp. 103–128. doi: 10.1016/B978-0-12-375027-3.00004-1.
    [24] D. Song et al., “Hippocampal microcircuits, functional connectivity, and prostheses,” Recent Advances On the Modular Organization of the Cortex, pp. 385–405, 2015.
    [25] P.-N. Yu, S. A. Naiini, C. N. Heck, C. Y. Liu, D. Song, and T. W. Berger, “A sparse Laguerre-Volterra autoregressive model for seizure prediction in temporal lobe epilepsy,” in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA: IEEE, Aug. 2016, pp. 1664–1667. doi: 10.1109/EMBC.2016.7591034.
    [26] V. Z. Marmarelis, Nonlinear dynamic modeling of physiological systems, vol. 10. John Wiley & Sons, 2004.
    [27] “LYSIS – BMSR Biomedical Simulations Resource.” https://bmsr.usc.edu/software/lysis/ (accessed Jul. 15, 2023).
    [28] D. Moretti, “Individual analysis of EEG frequency and band power in mild Alzheimer’s disease,” Clinical Neurophysiology, vol. 115, no. 2, pp. 299–308, Feb. 2004, doi: 10.1016/S1388-2457(03)00345-6.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE