簡易檢索 / 詳目顯示

研究生: 黎丞淯
Li, Cheng-Yu
論文名稱: 多層半導體結構磁控透鏡模擬研究
Simulation Studies for Optical Magnetic Lenses of Multilayer Semiconductor Structure
指導教授: 藍永強
Lan, Yung-Chiang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 66
中文關鍵詞: 多層結構磁化表面電漿相位變化兆赫波
外文關鍵詞: Multilayer structure, Magnetized Surface Plasmon, Phase change, Terahertz
相關次數: 點閱:54下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究中,我們在半導體材料銻化銦(InSb)之中外加磁場,先將結構設置為SIS(Semiconductor-Insulator-Semiconductor)結構,由於InSb內部電子產生迴旋運動(Cyclotron Motion),使其介電係數變更為張量(Tensor)形式,操縱SIS內部中的電漿共振波變化。
    利用SIS內部的表面電漿隨著結構尺寸的變化,將六段不同長度的SIS結構結合起來,可以讓每一段SIS結構的共振波相位產生差異,再加上外加磁場的作用,達到入射光入射後產生偏折的效果,利用此偏折效果,設計出多層半導體的磁控式透鏡,藉由結構的排列,設計出發散透鏡與匯聚透鏡,利用磁場調控輻射角度,可應用於〖TH〗_z波段的光束。
    我們也將透鏡區分上下部分,分別對其外加不同強度的磁場,完成一個發散元件可以有兩種不同方位的偵測,匯聚透鏡可以轉變輸出波位置。
    本研究使用有限元素分析軟體 COMSOL Multiphysics來對物理問題進行設計與模擬分析。

    We apply a magnetic field to the semiconductor material InSb and set the structure as a SIS (Semiconductor-Insulator-Semiconductor) structure first. Due to the cyclotron motion of the electrons inside InSb, the permittivity is changed to the form of a tensor, and the plasmonic resonance wave change in the interior of the SIS is manipulated. Using the surface plasmon inside the SIS to change with the size of the structure, combining six SIS structures with different lengths can make the resonant wave phase of each SIS structure different, plus the effect of an external magnetic field to achieve the deflection of incident light. Using this deflection effect, a multilayer semiconductor magnetic lens is designed.

    Through the arrangement of the structure, we designed the divergent lens and the converging lens, and the output wave angle is controlled by the magnetic field, which can be applied to the beam in the THz band. We also distinguish the upper and lower parts of the lens, and apply magnetic fields of different intensities to them respectively, so that a divergent lens can be detected in two different directions, and the converging lens can change the position of the output wave.

    This study uses the finite element analysis software COMSOL Multiphysics to design and simulate physical problems.

    摘要 I 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 兆赫波輻射(Terahertz Radiation) 2 1.2 磁化表面電漿(Magnetized Surface Plasma) 2 1.3 表面電漿激發方式 3 1.4 研究動機 4 第二章 表面電漿特性 5 2.1 金屬德汝德模型(Drude Model) 6 2.2 表面電漿(Surface Plasma) 14 2.3 端面耦合(End-Fire Coupling) 19 2.4 磁化表面電漿(Magnetized Surface Plasma) 20 2.5 介電係數張量(Dielectric Tensor) 21 第三章 有限元素分析法 (Finite Element Method) 25 3.1 有限元素分析法的基本原理 25 3.2 微分方程—弱形式(Weak Form) 27 3.3 離散化(Discretization) 28 3.4 有限元素分析法求解 32 3.5 COMSOL Multiphysics 33 第四章 磁控透鏡發射研究 34 4.1 設計原理:磁化表面電漿 34 4.2 模擬模型與結構設計 37 4.3 單一結構模擬結果 41 4.4 磁控發散透鏡 47 4.5 磁控匯聚透鏡 54 第五章 結論 60 參考文獻 61 附錄 63

    [1] M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics, vol. 1, no. 2, pp. 97-105, 2007.
    [2] K. Fujita, S. Hayashi, A. Ito, M. Hitaka, and T. Dougakiuchi, “Sub-terahertz and terahertz generation in long-wavelength quantum cascade lasers,” Nanophotonics, vol. 8, no. 12, pp. 2235-2241, 2019.
    [3] M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surface Science Reports, vol. 41, no. 1-8, pp. 167-178, 2001.
    [4] 邱國斌、蔡定平,“金屬表面電漿簡介,”物理雙月刊, vol. 28, no. 2, pp. 472-485, 2006.
    [5] Y.-C. Lan, C.-J. Chang, and P.-H. Lee, “Resonant tunneling effects on cavity-embedded metal film caused by surface-plasmon excitation,” Optics Letters, vol. 34, no. 1, pp. 25-27, 2009.
    [6] S. A. Maier, PLASMONICS:Fundamentals and Applications: Springer, 2007.
    [7] G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Optics Letters, vol. 8, no. 7, pp. 386-388, 1983.
    [8] M. S. Kushwaha, and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Physical Review B, vol. 36, no. 11, pp. 5960-5967, 1987.
    [9] M. S. Kushwaha, and P. Halevi, “Magnetoplasma modes in thin films in the Faraday configuration,” Physical Review B, vol. 35, no. 8, pp. 3879-3889, 1987.
    [10] M. S. Kushwaha, and P. Halevi, “Magnetoplasmons in thin films in the perpendicular configuration,” Physical Review B, vol. 38, no. 17, pp. 12428-12435, 1988.
    [11] M. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surface Science Reports - SURF SCI REP, vol. 41, pp. 167-181, 2001.
    [12] D. W. Pepper, and J. C. Heinrich, The finite element method basic concepts and applications with MATLAB, MAPLE, and COMSOL Third ed., pp. 1-6, CRC Press, 2017.

    [13] 王剛、安琳, COMSOL Multiphysics工程實踐與理論仿真-多物理場數值分析技術, 電子工業出版社, pp.18-19, 2012.
    [14] H.-H. Wu, and Y.-C. Lan, “Magnetic lenses of surface magnetoplasmons in semiconductor–glass waveguide arrays,” Applied Physics Express, vol. 7, no. 3, 2014.
    [15] Y.-C. Lan, and C.-M. Chen, “Long-range surface magnetoplasmon on thin plasmon films in the Voigt configuration,” Optics Express, vol. 18, no. 12, pp. 12470-12481, 2010.
    [16] B. H. Cheng, H. W. Chen, K. J. Chang, Y.-C. Lan, and D. P. Tsai, “Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution,” Scientific Reports, vol. 5, no. 1, pp. 18172, 2015.
    [17] 丁科,“PML吸收邊界條件影響因素分析,”物探與化探, no. 4, pp. 623-627, 2012.
    [18] J. Clarke, and A. I. Braginski, The SQUID handbook Vol 2 Applications of SQUIDs and SQUID systems, pp. 5-10, Germany: Wiley-VCH, 2006.

    下載圖示 校內:2024-08-31公開
    校外:2024-08-31公開
    QR CODE