簡易檢索 / 詳目顯示

研究生: 許景鈐
Hsu, Ching-Chien
論文名稱: 金屬氧化物寬能隙半導體應用於深波段紫外光偵測器
Metal Oxide Semiconductor with Wide Bandgap Applied on Deep UV Solar Blind Photodetector
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 86
中文關鍵詞: 氧化銦鎵氧化銦鎂共濺鍍紫外光感測器氧空缺
外文關鍵詞: IGO, MgInO, co-sputter, UV photodetector, oxygen vacancy
相關次數: 點閱:123下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文中,氧化銦鎵以及氧化銦鎂此兩種不同的金屬氧化物寬能隙半導體將被應用於深波段紫外光感測器的製作上。此論文可分為兩部分:第一部分的實驗裡,氧化銦鎵材料將透過磁控濺鍍機在不同氧流量的製程下形成的金半金結構的氧化銦鎵紫外光感測器。第二部分中,選用能帶寬度更大的氧化鎂代替氧化鎵,以形成應用於更深波段的紫外光感測器。
    本文第一部分中,使用氧化銦和氧化鎵靶材以共濺鍍的方式將氧化銦鎵薄膜沉積在玻璃基板上,其中通入0%到8%不同氧流量的濃度百分比。在濺鍍製程中隨著通入氧流量濃度的提升,改善了薄膜內部的氧空缺。而因著通氧製程的參與,元件中的暗電流有效被抑制住,因此光暗電流比也隨之提升了。實驗裡樣本C (4%的通氧濃度) 在五個樣本中有最好的光暗電流比,特性高達105以上,有最好的紫外光/可見光抑制比1.1×105,以及最短的下降時間常數0.02/0.75秒。
    本文第二部分中,氧化鎂取代氧化鎵製成氧化銦鎂的紫外光感測器。在共濺鍍製程裡通入2%、4%、6%三種不同氧濃度的處理。氧化銦鎂薄膜在濺鍍沉積時隨著通入氧濃度的提升,薄膜內部會完整與氧產生反應,形成高穿透率以及高透明度的現象。氧化銦鎂薄膜能帶寬會隨著濺鍍製程中通入氧濃度的提升而有明顯增大的趨勢。 在2V的偏壓下,樣品A (2%的通氧濃度) 有最好的低頻雜訊特性上的表現,呈現等效雜訊功率最小值2.03×10-12W以及探測能力最大值7.38×1012 cm Hz0.5W-1。實驗裡樣本C (6%的通氧濃度) 在三個樣本中擁有最好的紫外光/可見光抑制比5.95×104,以及最短的兩個下降時間常數1.91/13.17秒。

    In the thesis, two metal oxide semiconductor with wide bandgap, IGO and MgInO, were applied on the fabrication of deep UV solar-blind photodetector. The thesis is classified into two part. In the first part of the experiment, the MSM structured UV photodetector based on In2O3 doped Ga2O3 (IGO) was fabricated with different concentration of oxygen flow treatment during sputtering process. In the second part, the semiconductor with wider bandgap MgO replaced Ga2O3 to form a deeper wavelength of UV detector.
    In the first part, the IGO film was deposited on glass substrate by co-sputtering using In2O3 and Ga2O3 targets with different percentage of oxygen flow from 0% to 8%. The oxygen vacancy defects were improved with the increase of oxygen concentration during sputtering. With oxygen flow involved during sputtering process, the dark current of the device was effectively suppressed and the photo/dark current ratio was enhanced. Sample C with 4% of oxygen concentration has the best performance of photo/dark current ratio more than five orders, UV-to-visible rejection ratio of 1.1×105 and two decay time constants of 0.02/0.75 second among five samples.

    In the second part, MgInO photodetectors were fabricated with different concentration of 2%, 4%, 6% of oxygen flow treatment during sputtering process. As the oxygen flow rate increased, the deposited MgInO film during sputtering was fully oxidized, leading to a high transmittance and a high quality of transparency. The energy bandgap of MgInO thin film increased obviously with the increase of oxygen concentration during sputtering. Under an applied bias of 2 V, sample A has the best performance of NEP for having the minimum value of 2.03×10-12 and the maximum value of 7.38×1012 cm Hz0.5W-1 of Detectivity. Sample C with 6% of oxygen concentration has the best performance of UV-to-visible rejection ratio of 5.95×104 and two decay time constants of 1.91/13.17 second among three samples.

    Chinese Abstract I English Abstract II Acknowledgement IV Contents V Figure Captions VIII Table Captions XI Chapter 1. 1 Introduction 1 1.1 Introduction of Ultraviolet Detector 1 1.2 Ultraviolet Light 2 1.1.1 Classification of UV detectors 3 1.1.2 UV Semiconductor Detectors and Its Requirement 4 1.2 Theory of Ultraviolet Photodetectors 5 1.2.1 Photo Responsivity 5 1.2.2 Semiconductor Materials for Ultraviolet Detectors 6 1.3 Motivation 7 Chapter 2. 12 Physics of D-UV Photodetector Based on Amorphous Oxide Semiconductor 12 2.1 Photovoltaic Effect of a Photodetector 12 2.2 Carrier Transport Mechanisms of MSM Structured Photodetector 13 2.2.1 Schottky–Mott rule and Fermi Level Pinning 14 2.2.2 Transport Mechanism of a MS Junction 15 2.2.3 MSM Structured Device Energy Band Diagram 16 2.3 Ohmic-Schottky Contact Conversion and Mechanism related to Oxygen Vacancy 17 2.3.1 Introduction of Crystalline Defect 17 2.3.2 Oxygen Vacancy 18 2.3.3 Relation between MS Contact and Oxygen Vacancy 19 Chapter 3. 26 Photosensitive Characteristics of a-IGO Solar-blind Photodetector Related to Oxygen Vacancy 26 3.1 Material introduction 26 3.1.1 Wide Bandgap Material 27 3.1.2 Ga2O3 Introduction 27 3.1.3 In2O3 Introduction 28 3.2 Co-Sputtering Process 29 3.2.1 RF Magnetron Sputtering 29 3.2.2 Oxygen Vacancy during Sputtering Process 31 3.2.3 IGO Sputtering Process Details 32 3.3 Physical Property Analysis of IGO Photodetector 33 3.3.1 Ultraviolet–visible Spectroscopy of IGO Film 34 3.3.2 Energy Bandgap of IGO film 35 3.3.3 XPS measurement of IGO film 36 3.4 Electrical Characteristic of IGO photodetector 37 3.4.1 IV Characteristic of Schottky Contact 37 3.4.2 IV Curve of IGO Photodetector 38 3.4.3 Photo Response of IGO Photodetector 38 3.4.4 Dynamic Responses of IGO Photodetector 39 3.5 Summary 40 Chapter 4. 51 Wide Bandgap Semiconductor Ultraviolet Photodetectors Based on MgInO Material 51 4.1 Material introduction 51 4.1.1 MgO Introduction 52 4.1.2 In2O3 Introduction 53 4.2 Fabricated process of MgInO film 54 4.2.1 Co-Sputtering Process of MgInO photodetector 54 4.2.2 Au Contact Electrode of MgInO photodetector 55 4.3 Physical Property Analysis of MgInO Photodetector 56 4.3.1 Ultraviolet–visible Spectroscopy of MgInO Film 56 4.3.2 Energy Bandgap of MgInO film 57 4.4 Electrical Characteristic of MgInO photodetector 58 4.4.1 Schottky Contact of MgInO photodetector 58 4.4.2 Photo Response of MgInO Photodetector 60 4.4.3 IV Curve of MgInO Photodetector 61 4.4.4 Dynamic Responses of MgInO Photodetector 61 4.4.5 Low-Frequency Noise Spectra 62 4.5 Summary 64 Chapter 5. 72 Conclusion and Future Work 72 5.1 Conclusion 72 5.2 Future Work 73 5.2.1 Fabrication of Phototransistor-based on MgInO 73 5.2.2 MIM Structured RRAM with Ga2O3 Insulator Layer 75 Reference 80

    [1] M. Razeghi and A. Rogalski, "Semiconductor ultraviolet detectors," Journal of Applied Physics 79, 7433-7473, 1996.
    [2] J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley,
    New York, 1967).
    [3] The Middle Ultraviolet: Its Science and Technology, edited by A. E. S.
    Green (Wiley, New York, 1966).
    [4] R. E. Huffman, "Atmospheric, Ultraviolet Remote Sensing," International
    Geophysics Series (Academic, New York, 1992), Vol. 52.
    [5] R. E. Huffman, " Ultraviolet Optics and Technology," SPIE Milestone Series
    (SPIE Optical Engineering, Bellingham, Washington, 1993), Vol. MS 80.
    [6] JózefPiotrowski and Manijeh Razeghi," Improved performance of IR photodetectors with 3D gap engineering," Optoelectronic Integrated Circuit Materials, Physics, and Devices, 180 (April 24, 1995).
    [7] E. Cicek, R. McClintock, C. Y. Cho, B. Rahnema, and M. Razeghi,"Growth of AlGaN on silicon substrates: a novel way to make back-illuminated ultraviolet photodetectors," Applied Physics Letters 103, 191108 (2013).
    [8] A. Rogalski," Quantum well photoconductors in infrared detector technology," Journal of Applied Physics 93, 4355-4391 (2003).
    [9] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488–492, Nov. 2004.

    [10] Oliver Bierwagen and James S. Speck, “High electron mobility In2O3 ( 001 ) and (111) thin films with nondegenerate electron concentration,” Applied Physics Letters 97, 072103 (2010).
    [11] optoelectronics and photonics principles and practices, edited by S.O. Kasap
    [12] E. Monroy, E. Munoz, F. J. Sanchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Munoz and F. Cusso, “High-performance GaN pn junction photodetectors for solar ultraviolet applications,” Semicond. Sci. Technol. 13 (1998) 1042
    [13] D. H. Seib and L. W. Aukerman, “Photodetectors for the 0.1 to 1.0 μm Spectral
    Region,” Advances in Electronics and Electron Physics, Vol. 34, pp. 95–221.
    [14] C. Frojdh, G. Thungstrom, H. E. Nilsson, and C. S. Petersson, “UV-sensitive photodetectors based on metal-semiconductor contacts on 6H-SiC,” Phys. Scr. T 54, 169 (1994).
    [15] Daoyou Guo, Zhenping Wu, Peigang Li, Yuehua An, Han Liu, Xuncai Guo, Hui
    Yan, Guofeng Wang, Changlong Sun, Linghong Li, and Weihua Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Optical Materials Express Vol. 4, Issue 5, pp. 1067-1076 (2014)
    [16] D. Y. Guo, J. B. Wang, C. Cui, P. G. Li, X. L. Zhong, F. Wang, S. G. Yuan, K. D. Zhang, and Y. C. Zhou, “ZnO@TiO2 core-shell nanorod arrays with enhanced photoelectrochemical performance,” Sol. Energy 95, 237–245 (2013).
    [17] T. Murphy, K. Moazzami, and J. Phillips, “Trap-related photoconductivity in ZnO epilayers,” J. Electron. Mater. 35(4), 543–549 (2006).
    [18] John Bardeen, “Surface States and Rectification at a Metal Semi-Conductor Contact,” Phys. Rev. 71, 717 (15 May 1947).
    [19] Y. Harima, H. Okazaki, Y. Kunugi, and K. Yamashita, “Formation of Schottky barriers at interfaces between metals and molecular semiconductors of p‐ and n‐type conductances,” Appl. Phys. Lett. 69, 1059 (1996).

    [20] K. B. Sundaram and Ashamin Khan, “Work function determination of zinc oxide films,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 15, 428 (1997).
    [21] Raymond T. Tung, “Formation of an electric dipole at metal-semiconductor interfaces,” Phys. Rev. B 64, 205310 (2001).
    [22] Semiconductor devices physics and technology 2nd edition, edited by S.M. Sze.
    [23] Semiconductor material and device characterization, edited by DIETER K.
    SCHRODER.
    [24] D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Applied Physics Letters 105, 023507 (2014).
    [25] P. Ehrhart, “Properties and interactions of atomic defects in metals and alloys,” Landolt-Börnstein, New Series III, chapter 2 25, 88 (1991).
    [26] R. W. Siegel, “Atomic Defects and Diffusion in Metals,” in Point Defects and Defect Interactions in Metals J.-I. Takamura (ED.), 783 (1982).
    [27] Davide Ricci and Gianfranco Pacchioni, “Electron trapping at neutral divacancy sites on the MgO surface,” The Journal of Chemical Physics 117, 2844 (2002).
    [28] Gianfranco Pacchioni and Gianluigi Ieranò, “Computed Optical Absorption and Photoluminescence Spectra of Neutral Oxygen Vacancies inα-Quartz,” Phys. Rev. Lett. 79, 753 – Published 28 July 1997.
    [29] Erminia Scorza, Uwe Birkenheuer, and Cesare Pisani, “The oxygen vacancy at the surface and in bulk MgO: An embedded-cluster study,” The Journal of Chemical Physics 107, 9645 (1997).

    [30] H. L. Mosbackera, Y. M. Strzhemechny, and B. D. White, “Role of near-surface states in ohmic-Schottky conversion of Au contacts to ZnO,” Appl. Phys. Lett. 87, 012102 (2005).
    [31] M. W. Allena and S. M. Durbin, “Influence of oxygen vacancies on Schottky contacts to ZnO,” Appl. Phys. Lett. 92, 122110 (2008).
    [32] Chun Li1, Yoshio Bando, Meiyong Liao, Yasuo Koide, and Dmitri Golberg, “Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire,” Appl. Phys. Lett. 97, 161102 (2010).
    [33] Cheng-Hsiang Kuo, Jyh-Ming Wu, Su-Jien Lin and Wen-Chih Chang, “High sensitivity of middle-wavelength infrared photodetectors based on an individual InSb nanowire,” Nanoscale Res Lett. 8, 327 (2013).
    [34] D. Walker , V. Kumar , K. Mi , P. Sandvik , P. Kung , X. H. Zhang , M. Razeghi , “Solar-blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76, 403 (2000).
    [35] Tsuyoshi Takagi, Hiroshi Tanaka, Shizuo Fujita1, and Shigeo Fujita, “Molecular Beam Epitaxy of High Magnesium Content Single-Phase Wurzite MgxZn1-xO Alloys (xsime0.5) and Their Application to Solar-Blind Region Photodetectors,” Japanese Journal of Applied Physics 42, Part 2 (2003).
    [36] M. Y. Liao , Y. Koide , J. Alvarez , “Thermally stable visible-blind diamond photodiode using tungsten carbide Schottky contact,” Appl. Phys. Lett. 87, 022105 (2005).
    [37] R. Dahal , J. Li , Z. Y. Fan , M. L. Nakarmi , T. M. A. Tahtamouni , J. Y. Lin , H. X. Jiang , Phys. Status Solidi C 2008 , 5 , 2148 .
    [38] A. Soltani , H. A. Barkad , M. Mattalah , B. Benbakhti , J. C. De Jaeger , Y. M. Chong , Y. S. Zou , W. J. Zhang , S. T. Lee , A. BenMoussa , B. Giordanengo , J. F. Hochedez , “193nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors,” Appl. Phys. Lett. 2008 , 92 , 053501 (2005).
    [39] T. Oshima , T. Okuno , N. Arai , N. Suzuki , S. Ohira , S. Fujita , “Vertical Solar-Blind Deep-Ultraviolet Schottky Photodetectors Based on β-Ga2O3 Substrates,” Appl. Phys. Express 1, 011202 (2008).
    [40] Weiyan Guo, Yating Guo, Hao Dong and Xin Zhou, “Tailoring the electronic structure of β-Ga2O3 by non-metal doping from hybrid density functional theory calculations,” Phys. Chem. Chem. Phys. 17, 5817-5825 (2015).
    [41] M. Y. Liao , Y. Koide , J. Alvarez , “Thermally stable visible-blind diamond photodiode using tungsten carbide Schottky contact,” Appl. Phys. Lett. 87 , 022105 (2005).
    [42] R. Dahal , J. Li , Z. Y. Fan , M. L. Nakarmi , T. M. A. Tahtamouni , J. Y. Lin , H. X. Jiang , “AlN MSM and Schottky photodetectors,” Phys. Status Solidi C 5 , 2148 (2008).
    [43] A. Soltani , H. A. Barkad , M. Mattalah , B. Benbakhti , J. C. De Jaeger , Y. M. Chong , Y. S. Zou , W. J. Zhang , S. T. Lee , A. BenMoussa , B. Giordanengo , J. F. Hochedez , “193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors,” Appl. Phys. Lett. 92 , 053501 (2008).
    [44] Encyclopedia of Inorganic Chemistry, edited by King, R (1994).
    [45] Q.J. Wang, Q.H. Tan and Y.K. Liu, “Magnetic properties in carbon-doped In2O3: A density functional theory investigation,” Physica B: Condensed Matter 450, 54-57 (2014).
    [46] Oliver Bierwagen and James S. Speck, “High electron mobility In 2 O 3 ( 001 ) and (111) thin films with nondegenerate electron concentration,” Applied Physics Letters 97, 072103 (2010).

    [47] Mei, AB; O. Hellman; C. M. Schlepütz; A. Rockett; T.-C. Chiang; L. Hultman; I. Petrov; J. E. Greene, "Reflection Thermal Diffuse X-Ray Scattering for Quantitative Determination of Phonon Dispersion Relations," Physical Review B. 92, 174301 (2015).
    [48] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, et al., "Schottky barrier detectors on GaN for visible-blind ultraviolet detection," Appl. Phys. Lett. vol. 70, pp. 2277-2279, 1997.
    [49] Yanmin Zhao, Jiying Zhang, Dayong Jiang, Chongxin Shan, Zhenzhong Zhang, Bin Yao, Dongxu Zhao and Dezhen Shen, " Ultraviolet Photodetector Based on a MgZnO Film Grown by Radio-Frequency Magnetron Sputtering," ACS Appl. Mater. Interfaces, 2009, 1 (11), pp 2428–2430
    [50] L.K. Wang, Z.G. Ju, C.X. Shan, J. Zheng, D.Z. Shen, B. Yao, D.X. Zhao, Z.Z. Zhang, B.H. Li, J.Y. Zhang, " MgZnO metal–semiconductor–metal structured solar-blind photodetector with fast response," Solid State Communications Volume 149, Issues 45–46, December 2009, pp 2021–2023
    [51] D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, " Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors," Appl. Phys. Lett. 105, 023507 (2014).
    [52] Yanbo Li, Takero Tokizono, Meiyong Liao, Miao Zhong, Yasuo Koide, Ichiro Yamada, Jean-Jacques Delaunay, " Efficient Assembly of Bridged β-Ga2O3 Nanowires for Solar-Blind Photodetection," Adv. Funct. Mater. 2010, 20, 3972–3978.

    [53] Y. H. Liu, S. J. Young, L. W. Ji, and S. J. Chang, "Noise properties of Mg-doped ZnO nanorods visible-blind photosensors," IEEE J. Sel. Top. Quantum Electron., vol. 21, pp. 223-227, 2015.
    [54] S.-J. Chang, B.-G. Duan, C.-H. Hsiao, S.-J. Young, B.-C. Wang, T.-H. Kao, et al., "Low-Frequency Noise Characteristics of In-Doped ZnO Ultraviolet 75 Photodetectors," IEEE Photonics Technol. Lett., vol. 25, pp. 2043-2046, 2013.
    [55] Zi-Hao Wang, Hsin-Chieh Yu, Chih-Chiang Yang, Hsin-Ting Yeh, and Yan-Kuin Su, " Low-Frequency Noise Performance of Al-Doped ZnO Nanorod Photosensors by a Low-Temperature Hydrothermal Method," IEEE Transactions on Electron Device (accepted).
    [56] C.K. Wang, S.J. Chang, Y.K. Su, Y.Z. Chiou, S.C. Chen, C.S. Chang, T.K. Lin, H.L. Liu, J.J. Tang, " GaN MSM UV photodetectors with titanium tungsten transparent electrodes," IEEE Transactions on Electron Devices Volume 53, Issues 1, Jan. 2006, pp 38 - 42

    下載圖示 校內:2022-07-07公開
    校外:2022-07-07公開
    QR CODE