| 研究生: |
施翔耀 Shr, Shian-Yau |
|---|---|
| 論文名稱: |
應用表面電漿結合基因演算法於量測雙折射薄膜參數之研究 A new method for measuring the axis direction and refraction index of birefringence thin film by SPR combined with Genetic Algorithm |
| 指導教授: |
羅裕龍
Lo, Yu-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 雙折射率 、非等向性薄膜 、表面電漿 、方位角 、傾角 |
| 外文關鍵詞: | azimuth angle, birefringence index, anisotropic thin film, tilt angle |
| 相關次數: | 點閱:113 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在目前的表面電漿量測技術,都是以菱鏡或是半圓柱透鏡作為量測元件,以這種方式製作出來的量測系統有方位角的限制,只能在單一方位角做樣品量測,本研究用半球形的透鏡代替舊式的元件,突破方位角的限制,可以對待測樣品做全方位角與入射角的掃描,觀察其表面電漿共振的現象。利用這樣的設計,可以用來量測非等向性薄膜的表面參數,於不同角度量到的共振現象,搭配由理論建立起來的模擬資料庫,以基因演算法隨機產生範圍之內的參數與資料庫作比對,尋求出實驗值與理論質的最小誤差,進而反推出薄膜的表面參數,包含雙折射率、主軸傾角,與主軸方位角。
A method for determining the birefringence index,azimuthal angle, and pretilt angle of an anisotropic thin film by measuring the surface plasmon resonance (SPR) device lens/Silver/SiO2 is proposed. In this paper, we use
genetic algorithm method combine with curve fitting to develop an optical measurement method of thin film parameters in the SPR device to calculate the optical parameters at the states of 633nm He-Ne laser input light. After measuring the reflection intensity from 0 to 90 input light, we have the reflective intensity curve. By genetic algorithm method, the birefringence index, azimuthal angle, and pretilt angle of anisotropic thin film will be randomly produced. Then using curve fitting to get the minimum error between theoretical curve and measured curve, and calculate the optical parameters.
Although it difficult to measure all the optical parameters of anisotropic thin film, but using the novel system of SPR device and genetic algorithm method combine with curve fitting, we can overcome the difficulty.
Beasley, D., Bull, D. R., and Martin, R. R., An overview of genetic algorithm:
part 1: fundamentals, University Computing, 1993.
Bharathi, D., Sreejith, K., and Sunandana, C.S., “Surface plasmon–exciton
transition in ultra-thin silver and silver iodide films,” Appl. Phys. B Vol. 89
pp. 59–63, 2007.
Chien, F.C., and Chen, S.J., “Direct determination of the refractive index and
thickness of a biolayer based on coupled waveguide–surface plasmon
resonance mode,” Opt. Lett. Vol. 31 No. 2 pp. 187-189, 2006.
Chien, F.C., and Chen, S.J., “A sensitivity comparison of optical biosensors
based on four different surface plasmon resonance modes,” Biosensors and
Bioelectronics Vol.20, pp. 633–642, 2004.
Damos, F.S., Rita Luz, C.S., and Kubota Lauro, T., “Determination of
Thickness, Dielectric Constant of Thiol Films, and Kinetics of Adsorption
Using Surface Plasmon Resonance,” Langmuir Vol. 21 pp. 602-609, 2005.
Davis, L., Handbook of genetic algorithms, Van Nostrad Reinhold.
Elliott, J., and Igor I., “Wavelength dependent birefringence of surface
plasmon polaritonic crystals,” Phys. Rev. B Vol. 70 pp. 233403, 2004.
Fowles, G.R., Introduction to Modern Optics, 2nd ed., Holt, Rinehart and
Winston, New York, Ch. 6, pp. 185-188, 1975.
Guenther, Modern optics, McGraw-Hill, Ch. 13, pp. 530, 1995.
Horowitz, F., Structure-Induced Optical Anisotropy in thin film, Ph.D.
Dissertation, University of Arizona, Optical Science Center, 1983.
Hodgkinson, I.J., and Wu, Q.H., “Anisotropic antireflection coating:design
and fabrication,” Opt. Lett. Vol. 23 pp. 1553, 1998.
81
Hodgkinson, I.J., and Wu, Q.H., “Birefringent Thin Films and Polarizing
Elements,” Opt. Eng. Vol. 37 No.9 pp. 2630, 1998.
Holland, J.H., Adaption in Natural and Artificial Systems. Cambridge, MA:
The M.I.T. Press, 1975.
Hecht, Optics, Addision-Wesley, 4th ed., Ch. 7, pp. 282-286, 1998.
Hecht, Optics, Addision-Wesley, 4th ed., Ch. 8, pp. 336-344, 1998.
Jen, Y. J., Hsieh, C. H., and Lo, T. S., “Optical constant determination of an
anisotropic thin film via surface plasmon resonance: analyzed by sensitivity
calculation,” Opt. Commun. No. 244 pp.269–277, 2005.
Jen, Y. J., “Experimental verification of backward-wave phenomenon by
observation of reflection at angles larger than 90° in an anisotropic medium,”
Appl. Phys. Lett. Vol. 83 No. 16 pp. 20, 2003.
Kieser, B., Pauluth, D., and Gauglitz, G., “Nematic liquid crystals as sensitive
layers for surface plasmon resonance sensors,” Analytica Chimica Acta No.
434 pp. 231–237, 2001.
Lee, J.Y., Shih, H.C., Hong, C.T., and Chou, T.K., “Measurement of refractive
index change by surface Plasmon resonance and phase quadrature
interferometry,” Opt. Commun, No. 276 pp. 283–287, 2007.
Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings,
Springer-Verleg, Berlin, Heidelberg, Germany, 1988, pp. 10-16.
Yih J.N., Chien, F.C., and Chen, S.J., “Angular-interrogation attenuated total
reflectionmetrology system for plasmonic sensors,” Appl. Opts, Vol. 44, No.
29 PP.6155-6162, 2005
鄭旭志,利用實數型基因演算法合成布雷格光柵頻譜之應變分佈, 成功
大學電機所碩士論文,2002
林正偉,光纖式與全場表面電漿共振之相位量測,成功大學機械所碩士
論文,2005