簡易檢索 / 詳目顯示

研究生: 江昆鏗
Chiang, Kun-Keng
論文名稱: 燃料輔助法製備氧化鎳薄膜及其在電致變色元件與電阻式隨機存取記憶體之應用
Fuel-assisted synthesis of NiO films for use in electrochromic devices and resistance random access memories
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 143
中文關鍵詞: 燃料輔助法氧化鎳薄膜電致變色元件電阻轉換元件
外文關鍵詞: Fuel-assisted route, Nickel oxide thin films, Electrochromic devices, Resistive switching devices
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以燃料輔助法製備氧化鎳薄膜,並探討其應用在電致變色元件與電阻式隨機存取記憶體兩個部分。第一部分以硫脲輔助製備氧化鎳薄膜,藉由改變燃料硫脲的添加量及後續熱處理的溫度,探討氧化鎳的電致變色性質。研究結果顯示,隨著燃料硫脲的添加比例上升,所製備的氧化鎳薄膜展現出良好的電致變色性質,包括高穿透率變化、高著褪色效率、快速的著褪色反應時間及良好的可靠度。由材料分析得知,硫脲添加比例越高薄膜之晶粒粒徑越小,產生較多的晶粒表面,造成反應面積增加,降低氧化鎳薄膜中的電荷轉換阻力。更進一步降低薄膜熱處理的溫度,使電致變色元件有更高的穿透度變化。第二部分以甘胺酸輔助製備氧化鎳薄膜於導電基板,利用不同厚度之鋁上電極組成電阻式隨機存取記憶體元件,因鋁上電極好氧化之特性,奪取氧化鎳之氧原子使薄膜中產生氧空缺,造成薄膜內組成發生變化。並隨著厚度增加,薄膜內氧空缺濃度提高,使元件有較佳的電阻式隨機存取記憶體性質,包括較低的電阻轉換臨界電壓、較大的電阻比值、較佳的穩定性、較高的元件成功率及較長的記憶保持時間。

    Nickel oxide films have been formed on transparent conductive substrates by fuel-assisted routes for use in electrochromic devices and resistance random access memories (RRAM). For application to electrochromic devices, the nickel oxide films are fabricated using thiourea-assisted method. The effects of the amount of thiourea addition and the post-treatment temperature on the microstructures and electrochromic properties of the films are investigated. With increasing the amount of thiourea addition, the grain sizes of the nanoparticles within the films decrease. Superior electrochromic properties of the nickel oxide films, including larger optical modulation, higher coloration and bleaching efficiency, faster response time and better durability are therefore obtained due to the increase of surface area for charge transfer. In addition, lowering of the post-treatment temperature decreases the grain size further, resulting in the improvement of the electrochromic properties of the nickel oxide films. For application to ReRAM, the glycine-assisted nickel oxide films are fabrication on ITO substrates with Al top electrodes. The effect of Al-electrode thickness on the performances of nickel oxide ReRAM is investigated in this study. The device with thicker Al electrode demonstrates superior resistive switching properties, including smaller working voltage, larger ON/OFF ratio, better reliability, higher device yield, and better retention. It is attributed to higher oxygen vacancies formed in the nickel oxide films via the reduction of NiO by Al.

    第一章 緒論 1 1-1前言 1 1-2研究動機與目的 4 第二章 文獻回顧 7 2-1變色材料分類 7 2-1.1光致變色 (Photochromic,EC) 材料 7 2-1.2熱致變色 (Thermochromic,TC) 材料 8 2-1.3電致變色 (Electrochromic,EC) 材料 9 2-2電致變色材料 10 2-2.1還原態著色 (Cathodic coloration) 10 2-2.2氧化態著色 (Anodic coloration) 11 2-2.3還原態/氧化態均著色 (Cathodic/Anodic coloration) 11 2-3電致變色元件結構 12 2-3.1溶液型 (Solution) 12 2-3.2混合型 (Hybrid) 13 2-3.3電池型 (Battery-like) 14 2-4電致變色元件性能要求 16 2-5氧化鎳電致變色機制 17 2-5.1價間遷移理論 17 2-5.2氫氧基 (OH-) 注入/遷出造成著色/褪色的變化 18 2-5.3氫離子 (H+) 遷出/注入造成著色/褪色的變化 19 2-5.4鋰離子 (Li+) 注入/遷出造成褪色/著色的變化 20 2-6新型非揮發性記憶體簡介 21 2-6.1磁阻隨機存取記憶體 (MRAM) 21 2-6.2相變化隨機存取記憶體 (PCRAM) 22 2-6.3鐵電隨機存取記憶體 (FeRAM) 23 2-6.4電阻式隨機存取記憶體 (RRAM) 24 2-7電阻式隨機存取記憶體性能要求 25 2-8電阻轉換I-V曲線之極性特徵 27 2-9電阻轉換機制 29 2-9.1燈絲理論 (Filament theory) 30 2-9.2蕭特基能障改變 (Schottky barrier modification) 36 2-10介電材料的電流傳導機制 38 2-10.1蕭特基發射 (Schottky emission) 38 2-10.2歐姆效應 (Ohmic) 39 2-10.3夫倫克爾-普爾發射 (Frenkel-Poole emission) 39 2-10.4穿隧 (Tunnel) 40 2-10.5空間電荷限制電流 (Space-charge-limited current) 41 2-10.6離子傳導 (Ionic conduction) 42 第三章 實驗步驟與研究方法 43 3-1實驗材料 43 3-2實驗儀器設備 44 3-2.1旋轉塗佈機 44 3-2.2超音波震盪器 45 3-2.3高溫爐 45 3-2.4熱蒸鍍機 46 3-3實驗設計流程 47 3-3.1電致變色元件 47 3-3.2電阻式隨機存取記憶體 48 3-4實驗步驟 49 3-4.1電致變色元件 49 3-4.2電阻式隨機存取記憶體 52 3-5分析儀器 54 3-5.1掃描式電子顯微鏡 54 3-5.2穿透式電子顯微鏡 55 3-5.3低掠角X光繞射分析儀 57 3-5.4恆電位儀 58 3-5.5紫外光-可見光吸收光譜儀 59 3-5.6電化學交流阻抗分析 61 3-5.7化學分析電子光譜儀 61 3-5.8精密半導體參數分析儀 62 第四章 以硫脲輔助法製備氧化鎳薄膜及其於電致變色元件之應用 63 4-1不同硫脲添加量對電致變色性質之影響 63 4-1.1氧化鎳薄膜表面形貌與微結構分析 63 4-1.2氧化鎳薄膜之電致變色性質 70 4-1.3 以交流阻抗法分析氧化鎳薄膜之載子轉移與傳輸特性 80 4-2不同熱處理溫度對電致變色性質之影響 83 4-2.1氧化鎳薄膜表面形貌與微結構分析 83 4-2.2氧化鎳薄膜之電致變色性質 86 4-3結論 94 第五章 以甘胺酸輔助法製備氧化鎳薄膜及其於電阻式隨機存取記憶體之應用 95 5-1氧化鎳薄膜表面形貌、化學鍵結與微結構分析 95 5-2氧化鎳薄膜之電阻轉換性質 105 5-3氧化鎳薄膜之電阻轉換機制 116 5-4結論 130 第六章 總結 131 第七章 參考文獻 133

    1.林子平, 綠色旅館. 科學發展 460, 34-39, 2011.
    2.Mortimer, R. J., Electrochromic materials. Chem. Soc. Rev. 26 (3), 147-156, 1997.
    3.盧楊明, 以磁控濺鍍法製備軟性氧化鎢電致變色元件之探討. http://www.materialsnet.com.tw, 2009.
    4.Hutchby, J.; Garner, M., Assessment of the Potential & Maturity of Selected Emerging Research Memory Technologies Workshop & ERD/ERM Working Group Meeting. international technology roadmap for semiconductors, 2010.
    5.Derhacobian, N.; Hollmer, S. C.; Gilbert, N.; Kozicki, M. N., Power and Energy Perspectives of Nonvolatile Memory Technologies. Proceedings of the IEEE 98 (2), 283-298, 2010.
    6.Chung, A.; Deen, J.; Lee, J. S.; Meyyappan, M., Nanoscale memory devices. Nanotechnology 21 (41), 412001, 2010.
    7.Waser, R.; Aono, M., Nanoionics-based resistive switching memories. Nat. Mater. 6 (11), 833-840, 2007.
    8.Dirksen, J. A.; Duval, K.; Ring, T. A., NiO thin-film formaldehyde gas sensor. Sens. Actuator B-Chem. 80 (2), 106-115, 2001.
    9.Korosec, R. C.; Bukovec, P., Sol-gel prepared NiO thin films for electrochromic applications. Acta Chimica Slovenica 53 (2), 136-147, 2006.
    10.Stookey, S. D., Photosensitive Glass. Industrial & Engineering Chemistry 41 (4), 856-861, 1949.
    11.Bloomquist, D. R.; Willett, R. D., THERMOCHROMIC PHASE-TRANSITIONS IN TRANSITION-METAL SALTS. Coord. Chem. Rev. 47 (1-2), 125-164, 1982.
    12.Heat-Sensitive Security Ink. http://www.protectedpaper.com/default.asp,
    13.A New Pathway to Electrochromic Materials. http://www.unisa.edu.au/,
    14.Electrochromic Glass. http://www.glassresource.com/,
    15.Platt, J. R., Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field. The Journal of Chemical Physics 34 (3), 862-863, 1961.
    16.S. K. Deb; U. S. Patent, 3 (521), 941, 1970.
    17.Niklasson, G. A.; Granqvist, C. G., Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17 (2), 127-156, 2007.
    18.Shirota, Y., Organic materials for electronic and optoelectronic devices. J. Mater. Chem. 10 (1), 1-25, 2000.
    19.Argun, A. A.; Aubert, P. H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R., Multicolored electrochromism polymers: Structures and devices. Chem. Mat. 16 (23), 4401-4412, 2004.
    20.Purushothaman, K. K.; Antony, S. J.; Muralidharan, G., Optical, structural and electrochromic properties of nickel oxide films produced by sol-gel technique. Solar Energy 85 (5), 978-984, 2011.
    21.Zhang, J.; Tu, J. P.; Xia, X. H.; Qiao, Y.; Lu, Y., An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte. Sol. Energy Mater. Sol. Cells 93 (10), 1840-1845, 2009.
    22.Vidotti, M.; de Torresi, S. I. C., Nanochromics: Old materials, new structures and architectures for high performance devices. J. Braz. Chem. Soc. 19 (7), 1248-1257, 2008.
    23.Faughnan, B. W.; Crandall, R. S.; Heyman, P. M., ELECTROCHROMISM IN WO3 AMORPHOUS FILMS. Rca Review 36 (1), 177-197, 1975.
    24.Dalavi, D. S.; Suryavanshi, M. J.; Patil, D. S.; Mali, S. S.; Moholkar, A. V.; Kalagi, S. S.; Vanalkar, S. A.; Kang, S. R.; Kim, J. H.; Patil, P. S., Nanoporous nickel oxide thin films and its improved electrochromic performance: Effect of thickness. Applied Surface Science 257 (7), 2647-2656, 2011.
    25.Chiu, K. F.; Chang, C. Y.; Lin, C. M., The electrochemical performance of bias-sputter-deposited nanocrystalline nickel oxide thin films toward lithium. J. Electrochem. Soc. 152 (6), A1188-A1192, 2005.
    26.Nagai, J., CHARACTERIZATION OF EVAPORATED NICKEL-OXIDE AND ITS APPLICATION TO ELECTROCHROMIC GLAZING. Sol. Energy Mater. Sol. Cells 31 (2), 291-299, 1993.
    27.Serebrennikova, I.; Birss, V. I., Electrochemical behavior of sol-gel produced Ni and Ni-Co oxide films. J. Electrochem. Soc. 144 (2), 566-572, 1997.
    28.Ottaviano, L.; Pennisi, A.; Simone, F., Electrochromic nickel oxide films made by reactive r.f. sputtering from different targets. Surf. Interface Anal. 36 (9), 1335-1339, 2004.
    29.Bouessaya, I.; Rougier, A.; Poizot, P.; Moscovici, J.; Michalowicz, A.; Tarascon, J. M., Electrochromic degradation in nickel oxide thin film: A self-discharge and dissolution phenomenon. Electrochimica Acta 50 (18), 3737-3745, 2005.
    30.Azens, A.; Kullman, L.; Vaivars, G.; Nordborg, H.; Granqvist, C. G., Sputter-deposited nickel oxide for electrochromic applications. Solid State Ion. 113, 449-456, 1998.
    31.Park, J. Y.; Ahn, K. S.; Nah, Y. C.; Shim, H. S.; Sung, Y. E., Electrochemical and electrochromic properties of Ni oxide thin films prepared by a sol-gel method. J. Sol-Gel Sci. Technol. 31 (1-3), 323-328, 2004.
    32.Scarminio, J.; Estrada, W.; Andersson, A.; Gorenstein, A.; Decker, F., H-INSERTION AND ELECTROCHROMISM IN NIOX THIN-FILMS. J. Electrochem. Soc. 139 (5), 1236-1239, 1992.
    33.Bode, H.; Dehmelt, K.; Witte, J., NICKEL HYDROXIDE ELECTRODES .2. OXIDATION PRODUCTS OF NICKEL (2) HYDROXIDES. Z. Anorg. Allg. Chem. 366 (1-2), 1-&, 1969.
    34.Sambe, H.; Nabi, T. M.; Ramaker, D. E.; Mansour, A. N.; O'Grady, W. E., The Oxidation State of Ni in the Nickel Oxide Electrode and Related Nickel Oxide Compounds: I. Spectroscopic Evidence. 1997.
    35.Sonavane, A. C.; Inamdar, A. I.; Shinde, P. S.; Deshmukh, H. P.; Patil, R. S.; Patil, P. S., Efficient electrochromic nickel oxide thin films by electrodeposition. Journal of Alloys and Compounds 489 (2), 667-673, 2010.
    36.Subramanian, B.; Ibrahim, M. M.; Murali, K. R.; Vidhya, V. S.; Sanjeeviraja, C.; Jayachandran, M., Structural, optoelectronic and electrochemical properties of nickel oxide films. J. Mater. Sci.-Mater. Electron. 20 (10), 953-957, 2009.
    37.Shrestha, N. K.; Yang, M.; Schmuki, P., Self-Ordered Nanoporous Nickel Oxide/Fluoride Composite Film with Strong Electrochromic Contrast. Electrochem. Solid State Lett. 13 (8), C21-C24, 2010.
    38.Huang, H.; Lu, S. X.; Zhang, W. K.; Gan, Y. P.; Wang, C. T.; Yu, L.; Tao, X. Y., Photoelectrochromic properties of NiO film deposited on an N-doped TiO2 photocatalytical layer. J. Phys. Chem. Solids 70 (3-4), 745-749, 2009.
    39.Sawaby, A.; Selim, M. S.; Marzouk, S. Y.; Mostafa, M. A.; Hosny, A., Structure, optical and electrochromic properties of NiO thin films. Physica B 405 (16), 3412-3420, 2010.
    40.Purushothaman, K. K.; Dhanashankar, M.; Muralidharan, G., Preparation and characterization of F doped SnO2 films and electrochromic properties of FTO/NiO films. Curr. Appl. Phys. 9 (1), 67-72, 2009.
    41.Zhu, J. G., Magnetoresistive Random Access Memory: The Path to Competitiveness and Scalability. Proc. IEEE 96 (11), 1786-1798, 2008.
    42.Salinga, M.; Wuttig, M., Phase-Change Memories on a Diet. Science 332 (6029), 543-544, 2011.
    43.Ducharme, S.; Reece, T. J.; Othon, C. M.; Rannow, R. K., Ferroelectric polymer Langmuir-Blodgett films for nonvolatile memory applications. IEEE Trans. Device Mater. Reliab. 5 (4), 720-735, 2005.
    44.Lee, M. J.; Park, Y.; Suh, D. S.; Lee, E. H.; Seo, S.; Kim, D. C.; Jung, R.; Kang, B. S.; Ahn, S. E.; Lee, C. B.; Seo, D. H.; Cha, Y. K.; Yoo, I. K.; Kim, J. S.; Park, B. H., Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater. 19 (22), 3919, 2007.
    45.Waser, R.; Dittmann, R.; Staikov, G.; Szot, K., Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater. 21 (25-26), 2632, 2009.
    46.Kim, D. C.; Lee, M. J.; Ahn, S. E.; Seo, S.; Park, J. C.; Yoo, I. K.; Baek, I. G.; Kim, H. J.; Yim, E. K.; Lee, J. E.; Park, S. O.; Kim, H. S.; Chung, U. I.; Moon, J. T.; Ryu, B. I., Improvement of resistive memory switching in NiO using IrO2. Appl. Phys. Lett. 88 (23), 232106, 2006.
    47.Choi, B. J.; Jeong, D. S.; Kim, S. K.; Rohde, C.; Choi, S.; Oh, J. H.; Kim, H. J.; Hwang, C. S.; Szot, K.; Waser, R.; Reichenberg, B.; Tiedke, S., Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98 (3), 033715, 2005.
    48.Liao, Z. M.; Hou, C.; Zhang, H. Z.; Wang, D. S.; Yu, D. P., Evolution of resistive switching over bias duration of single Ag2S nanowires. Appl. Phys. Lett. 96 (20), 203109, 2010.
    49.Liu, X. H.; Mayer, M. T.; Wang, D. W., Negative differential resistance and resistive switching behaviors in Cu2S nanowire devices. Appl. Phys. Lett. 96 (22), 223103, 2010.
    50.Liu, S. Q.; Wu, N. J.; Ignatiev, A., Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76 (19), 2749-2751, 2000.
    51.Watanabe, Y.; Bednorz, J. G.; Bietsch, A.; Gerber, C.; Widmer, D.; Beck, A.; Wind, S. J., Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl. Phys. Lett. 78 (23), 3738-3740, 2001.
    52.Schindler, C.; Valov, I.; Waser, R., Faradaic currents during electroforming of resistively switching Ag-Ge-Se type electrochemical metallization memory cells. Phys. Chem. Chem. Phys. 11 (28), 5974-5979, 2009.
    53.Gomes, H. L.; Benvenho, A. R. V.; de Leeuw, D. M.; Colle, M.; Stallinga, P.; Verbakel, F.; Taylor, D. M., Switching in polymeric resistance random-access memories (RRAMS). Org. Electron. 9 (1), 119-128, 2008.
    54.Guan, W. H.; Long, S. B.; Jia, R.; Liu, M., Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide. Appl. Phys. Lett. 91 (6), 062111, 2007.
    55.Sawa, A., Resistive switching in transition metal oxides. Mater. Today 11 (6), 28-36, 2008.
    56.Park, G. S.; Li, X. S.; Kim, D. C.; Jung, R. J.; Lee, M. J.; Seo, S., Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl. Phys. Lett. 91 (22), 222103, 2007.
    57.Ahn, S. E.; Lee, M. J.; Park, Y.; Kang, B. S.; Lee, C. B.; Kim, K. H.; Seo, S.; Suh, D. S.; Kim, D. C.; Hur, J.; Xianyu, W.; Stefanovich, G.; Yin, H. A.; Yoo, I. K.; Lee, A. H.; Park, J. B.; Baek, I. G.; Park, B. H., Write current reduction in transition metal oxide based resistance-change memory. Adv. Mater. 20 (5), 924, 2008.
    58.Hirose, Y.; Hirose, H., POLARITY-DEPENDENT MEMORY SWITCHING AND BEHAVIOR OF AG DENDRITE IN AG-PHOTODOPED AMORPHOUS AS2S3 FILMS. J. Appl. Phys. 47 (6), 2767-2772, 1976.
    59.Billen, J.; Steudel, S.; Muller, R.; Genoe, J.; Heremans, P., A comprehensive model for bipolar electrical switching of CuTCNQ memories. Appl. Phys. Lett. 91 (26), 263507, 2007.
    60.Goux, L.; Lisoni, J. G.; Jurczak, M.; Wouters, D. J.; Courtade, L.; Muller, C., Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers. J. Appl. Phys. 107 (2), 024512, 2010.
    61.Sawa, A.; Fujii, T.; Kawasaki, M.; Tokura, Y., Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85 (18), 4073-4075, 2004.
    62.Sze, S. M., Physics of Semiconductor Devices 2nd Edition. p.402, 1981.
    63.Wu, W. T.; Chen, J. S.; Wu, J. J., Synthesis of Tungsten Oxide Powders Via Thiourea-Assisted Route: Tailoring from Hierarchical Microspheres to Mesoporously Structured Nanoparticles. J. Am. Ceram. Soc. 93 (8), 2268-2273, 2010.
    64.Gao, Q. Y.; Wang, G. P.; Sun, Y. Y.; Epstein, I. R., Simultaneous tracking of sulfur species in the oxidation of thiourea by hydrogen peroxide. J. Phys. Chem. A 112 (26), 5771-5773, 2008.
    65.Avendano, E.; Azens, A.; Niklasson, G. A.; Granqvist, C. G., Nickel-oxide-based electrochromic films with optimized optical properties. J. Solid State Electrochem. 8 (1), 37-39, 2003.
    66.Ahn, H. J.; Shim, H. S.; Kim, Y. S.; Kim, C. Y.; Seong, T. Y., Synthesis and characterization of NiO-Ta2O5 nanocomposite electrode for electrochromic devices. Electrochem. Commun. 7 (6), 567-571, 2005.
    67.Uplane, M. M.; Mujawar, S. H.; Inamdar, A. I.; Shinde, P. S.; Sonavane, A. C.; Patil, P. S., Structural, optical and electrochromic properties of nickel oxide thin films grown from electrodeposited nickel sulphide. Appl. Surf. Sci. 253 (24), 9365-9371, 2007.
    68.Bouessay, I.; Rougier, A.; Beaudoin, B.; Leriche, J. B., Pulsed Laser-Deposited nickel oxide thin films as electrochromic anodic materials. Appl. Surf. Sci. 186 (1-4), 490-495, 2002.
    69.Lin, S. H.; Chen, F. R.; Kai, J. J., Electrochromic properties of nano-composite nickel oxide film. Appl. Surf. Sci. 254 (11), 3357-3363, 2008.
    70.Lou, X. C.; Zhao, X. J.; Feng, J. M.; Zhou, X. D., Electrochromic properties of Al doped B-subsituted NiO films prepared by sol-gel. Prog. Org. Coat. 64 (2-3), 300-303, 2009.
    71.Mahmoud, S. A.; Aly, S. A.; Abdel-Rahman, M.; Abdel-Hady, K., Electrochromic characterisation of electrochemically deposited nickel oxide films. Physica B 293 (1-2), 125-131, 2000.
    72.Maruyama, T.; Arai, S., THE ELECTROCHROMIC PROPERTIES OF NICKEL-OXIDE THIN-FILMS PREPARED BY CHEMICAL-VAPOR-DEPOSITION. Sol. Energy Mater. Sol. Cells 30 (3), 257-262, 1993.
    73.Tenent, R. C.; Gillaspie, D. T.; Miedaner, A.; Parilla, P. A.; Curtis, C. J.; Dillon, A. C., Fast-Switching Electrochromic Li+-Doped NiO Films by Ultrasonic Spray Deposition. Journal of the Electrochemical Society 157 (3), H318-H322, 2010.
    74.Lee, M. K.; Fan, C. H., Electrochromic Characterization of Nickel Oxide Films Grown on ITO/Glass by Liquid Phase Deposition. Journal of the Electrochemical Society 156 (10), D395-D399, 2009.
    75.Purushothaman, K. K.; Muralidharan, G., NANOPOROUS NiO BASED ELECTROCHROMIC WINDOW. Funct. Mater. Lett. 2 (3), 143-145, 2009.
    76.Lou, X. C.; Zhao, X. J.; Xiong, Y. L.; Sui, X. T., The influence of annealing on electrochromic properties of Al-B-NiO thin films prepared by sol-gel. Journal of Sol-Gel Science and Technology 54 (1), 43-48, 2010.
    77.Lou, X. C.; Zhao, X. J.; Xiong, Y. L.; Sui, X. T., The influence of annealing on electrochromic properties of Al-B-NiO thin films prepared by sol-gel. J. Sol-Gel Sci. Technol. 54 (1), 43-48, 2009.
    78.Xia, X. H.; Tu, J. P.; Zhang, J.; Wang, X. L.; Zhang, W. K.; Huang, H., Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition. Sol. Energy Mater. Sol. Cells 92 (6), 628-633, 2008.
    79.Lee, H. D.; Magyari-Kope, B.; Nishi, Y., Model of metalic filament formation and rupture in NiO for unipolar switching. Phys. Rev. B 81 (19), 4, 2010.

    無法下載圖示 校內:2016-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE