| 研究生: |
江昆鏗 Chiang, Kun-Keng |
|---|---|
| 論文名稱: |
燃料輔助法製備氧化鎳薄膜及其在電致變色元件與電阻式隨機存取記憶體之應用 Fuel-assisted synthesis of NiO films for use in electrochromic devices and resistance random access memories |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 燃料輔助法 、氧化鎳薄膜 、電致變色元件 、電阻轉換元件 |
| 外文關鍵詞: | Fuel-assisted route, Nickel oxide thin films, Electrochromic devices, Resistive switching devices |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以燃料輔助法製備氧化鎳薄膜,並探討其應用在電致變色元件與電阻式隨機存取記憶體兩個部分。第一部分以硫脲輔助製備氧化鎳薄膜,藉由改變燃料硫脲的添加量及後續熱處理的溫度,探討氧化鎳的電致變色性質。研究結果顯示,隨著燃料硫脲的添加比例上升,所製備的氧化鎳薄膜展現出良好的電致變色性質,包括高穿透率變化、高著褪色效率、快速的著褪色反應時間及良好的可靠度。由材料分析得知,硫脲添加比例越高薄膜之晶粒粒徑越小,產生較多的晶粒表面,造成反應面積增加,降低氧化鎳薄膜中的電荷轉換阻力。更進一步降低薄膜熱處理的溫度,使電致變色元件有更高的穿透度變化。第二部分以甘胺酸輔助製備氧化鎳薄膜於導電基板,利用不同厚度之鋁上電極組成電阻式隨機存取記憶體元件,因鋁上電極好氧化之特性,奪取氧化鎳之氧原子使薄膜中產生氧空缺,造成薄膜內組成發生變化。並隨著厚度增加,薄膜內氧空缺濃度提高,使元件有較佳的電阻式隨機存取記憶體性質,包括較低的電阻轉換臨界電壓、較大的電阻比值、較佳的穩定性、較高的元件成功率及較長的記憶保持時間。
Nickel oxide films have been formed on transparent conductive substrates by fuel-assisted routes for use in electrochromic devices and resistance random access memories (RRAM). For application to electrochromic devices, the nickel oxide films are fabricated using thiourea-assisted method. The effects of the amount of thiourea addition and the post-treatment temperature on the microstructures and electrochromic properties of the films are investigated. With increasing the amount of thiourea addition, the grain sizes of the nanoparticles within the films decrease. Superior electrochromic properties of the nickel oxide films, including larger optical modulation, higher coloration and bleaching efficiency, faster response time and better durability are therefore obtained due to the increase of surface area for charge transfer. In addition, lowering of the post-treatment temperature decreases the grain size further, resulting in the improvement of the electrochromic properties of the nickel oxide films. For application to ReRAM, the glycine-assisted nickel oxide films are fabrication on ITO substrates with Al top electrodes. The effect of Al-electrode thickness on the performances of nickel oxide ReRAM is investigated in this study. The device with thicker Al electrode demonstrates superior resistive switching properties, including smaller working voltage, larger ON/OFF ratio, better reliability, higher device yield, and better retention. It is attributed to higher oxygen vacancies formed in the nickel oxide films via the reduction of NiO by Al.
1.林子平, 綠色旅館. 科學發展 460, 34-39, 2011.
2.Mortimer, R. J., Electrochromic materials. Chem. Soc. Rev. 26 (3), 147-156, 1997.
3.盧楊明, 以磁控濺鍍法製備軟性氧化鎢電致變色元件之探討. http://www.materialsnet.com.tw, 2009.
4.Hutchby, J.; Garner, M., Assessment of the Potential & Maturity of Selected Emerging Research Memory Technologies Workshop & ERD/ERM Working Group Meeting. international technology roadmap for semiconductors, 2010.
5.Derhacobian, N.; Hollmer, S. C.; Gilbert, N.; Kozicki, M. N., Power and Energy Perspectives of Nonvolatile Memory Technologies. Proceedings of the IEEE 98 (2), 283-298, 2010.
6.Chung, A.; Deen, J.; Lee, J. S.; Meyyappan, M., Nanoscale memory devices. Nanotechnology 21 (41), 412001, 2010.
7.Waser, R.; Aono, M., Nanoionics-based resistive switching memories. Nat. Mater. 6 (11), 833-840, 2007.
8.Dirksen, J. A.; Duval, K.; Ring, T. A., NiO thin-film formaldehyde gas sensor. Sens. Actuator B-Chem. 80 (2), 106-115, 2001.
9.Korosec, R. C.; Bukovec, P., Sol-gel prepared NiO thin films for electrochromic applications. Acta Chimica Slovenica 53 (2), 136-147, 2006.
10.Stookey, S. D., Photosensitive Glass. Industrial & Engineering Chemistry 41 (4), 856-861, 1949.
11.Bloomquist, D. R.; Willett, R. D., THERMOCHROMIC PHASE-TRANSITIONS IN TRANSITION-METAL SALTS. Coord. Chem. Rev. 47 (1-2), 125-164, 1982.
12.Heat-Sensitive Security Ink. http://www.protectedpaper.com/default.asp,
13.A New Pathway to Electrochromic Materials. http://www.unisa.edu.au/,
14.Electrochromic Glass. http://www.glassresource.com/,
15.Platt, J. R., Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field. The Journal of Chemical Physics 34 (3), 862-863, 1961.
16.S. K. Deb; U. S. Patent, 3 (521), 941, 1970.
17.Niklasson, G. A.; Granqvist, C. G., Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17 (2), 127-156, 2007.
18.Shirota, Y., Organic materials for electronic and optoelectronic devices. J. Mater. Chem. 10 (1), 1-25, 2000.
19.Argun, A. A.; Aubert, P. H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R., Multicolored electrochromism polymers: Structures and devices. Chem. Mat. 16 (23), 4401-4412, 2004.
20.Purushothaman, K. K.; Antony, S. J.; Muralidharan, G., Optical, structural and electrochromic properties of nickel oxide films produced by sol-gel technique. Solar Energy 85 (5), 978-984, 2011.
21.Zhang, J.; Tu, J. P.; Xia, X. H.; Qiao, Y.; Lu, Y., An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte. Sol. Energy Mater. Sol. Cells 93 (10), 1840-1845, 2009.
22.Vidotti, M.; de Torresi, S. I. C., Nanochromics: Old materials, new structures and architectures for high performance devices. J. Braz. Chem. Soc. 19 (7), 1248-1257, 2008.
23.Faughnan, B. W.; Crandall, R. S.; Heyman, P. M., ELECTROCHROMISM IN WO3 AMORPHOUS FILMS. Rca Review 36 (1), 177-197, 1975.
24.Dalavi, D. S.; Suryavanshi, M. J.; Patil, D. S.; Mali, S. S.; Moholkar, A. V.; Kalagi, S. S.; Vanalkar, S. A.; Kang, S. R.; Kim, J. H.; Patil, P. S., Nanoporous nickel oxide thin films and its improved electrochromic performance: Effect of thickness. Applied Surface Science 257 (7), 2647-2656, 2011.
25.Chiu, K. F.; Chang, C. Y.; Lin, C. M., The electrochemical performance of bias-sputter-deposited nanocrystalline nickel oxide thin films toward lithium. J. Electrochem. Soc. 152 (6), A1188-A1192, 2005.
26.Nagai, J., CHARACTERIZATION OF EVAPORATED NICKEL-OXIDE AND ITS APPLICATION TO ELECTROCHROMIC GLAZING. Sol. Energy Mater. Sol. Cells 31 (2), 291-299, 1993.
27.Serebrennikova, I.; Birss, V. I., Electrochemical behavior of sol-gel produced Ni and Ni-Co oxide films. J. Electrochem. Soc. 144 (2), 566-572, 1997.
28.Ottaviano, L.; Pennisi, A.; Simone, F., Electrochromic nickel oxide films made by reactive r.f. sputtering from different targets. Surf. Interface Anal. 36 (9), 1335-1339, 2004.
29.Bouessaya, I.; Rougier, A.; Poizot, P.; Moscovici, J.; Michalowicz, A.; Tarascon, J. M., Electrochromic degradation in nickel oxide thin film: A self-discharge and dissolution phenomenon. Electrochimica Acta 50 (18), 3737-3745, 2005.
30.Azens, A.; Kullman, L.; Vaivars, G.; Nordborg, H.; Granqvist, C. G., Sputter-deposited nickel oxide for electrochromic applications. Solid State Ion. 113, 449-456, 1998.
31.Park, J. Y.; Ahn, K. S.; Nah, Y. C.; Shim, H. S.; Sung, Y. E., Electrochemical and electrochromic properties of Ni oxide thin films prepared by a sol-gel method. J. Sol-Gel Sci. Technol. 31 (1-3), 323-328, 2004.
32.Scarminio, J.; Estrada, W.; Andersson, A.; Gorenstein, A.; Decker, F., H-INSERTION AND ELECTROCHROMISM IN NIOX THIN-FILMS. J. Electrochem. Soc. 139 (5), 1236-1239, 1992.
33.Bode, H.; Dehmelt, K.; Witte, J., NICKEL HYDROXIDE ELECTRODES .2. OXIDATION PRODUCTS OF NICKEL (2) HYDROXIDES. Z. Anorg. Allg. Chem. 366 (1-2), 1-&, 1969.
34.Sambe, H.; Nabi, T. M.; Ramaker, D. E.; Mansour, A. N.; O'Grady, W. E., The Oxidation State of Ni in the Nickel Oxide Electrode and Related Nickel Oxide Compounds: I. Spectroscopic Evidence. 1997.
35.Sonavane, A. C.; Inamdar, A. I.; Shinde, P. S.; Deshmukh, H. P.; Patil, R. S.; Patil, P. S., Efficient electrochromic nickel oxide thin films by electrodeposition. Journal of Alloys and Compounds 489 (2), 667-673, 2010.
36.Subramanian, B.; Ibrahim, M. M.; Murali, K. R.; Vidhya, V. S.; Sanjeeviraja, C.; Jayachandran, M., Structural, optoelectronic and electrochemical properties of nickel oxide films. J. Mater. Sci.-Mater. Electron. 20 (10), 953-957, 2009.
37.Shrestha, N. K.; Yang, M.; Schmuki, P., Self-Ordered Nanoporous Nickel Oxide/Fluoride Composite Film with Strong Electrochromic Contrast. Electrochem. Solid State Lett. 13 (8), C21-C24, 2010.
38.Huang, H.; Lu, S. X.; Zhang, W. K.; Gan, Y. P.; Wang, C. T.; Yu, L.; Tao, X. Y., Photoelectrochromic properties of NiO film deposited on an N-doped TiO2 photocatalytical layer. J. Phys. Chem. Solids 70 (3-4), 745-749, 2009.
39.Sawaby, A.; Selim, M. S.; Marzouk, S. Y.; Mostafa, M. A.; Hosny, A., Structure, optical and electrochromic properties of NiO thin films. Physica B 405 (16), 3412-3420, 2010.
40.Purushothaman, K. K.; Dhanashankar, M.; Muralidharan, G., Preparation and characterization of F doped SnO2 films and electrochromic properties of FTO/NiO films. Curr. Appl. Phys. 9 (1), 67-72, 2009.
41.Zhu, J. G., Magnetoresistive Random Access Memory: The Path to Competitiveness and Scalability. Proc. IEEE 96 (11), 1786-1798, 2008.
42.Salinga, M.; Wuttig, M., Phase-Change Memories on a Diet. Science 332 (6029), 543-544, 2011.
43.Ducharme, S.; Reece, T. J.; Othon, C. M.; Rannow, R. K., Ferroelectric polymer Langmuir-Blodgett films for nonvolatile memory applications. IEEE Trans. Device Mater. Reliab. 5 (4), 720-735, 2005.
44.Lee, M. J.; Park, Y.; Suh, D. S.; Lee, E. H.; Seo, S.; Kim, D. C.; Jung, R.; Kang, B. S.; Ahn, S. E.; Lee, C. B.; Seo, D. H.; Cha, Y. K.; Yoo, I. K.; Kim, J. S.; Park, B. H., Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater. 19 (22), 3919, 2007.
45.Waser, R.; Dittmann, R.; Staikov, G.; Szot, K., Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater. 21 (25-26), 2632, 2009.
46.Kim, D. C.; Lee, M. J.; Ahn, S. E.; Seo, S.; Park, J. C.; Yoo, I. K.; Baek, I. G.; Kim, H. J.; Yim, E. K.; Lee, J. E.; Park, S. O.; Kim, H. S.; Chung, U. I.; Moon, J. T.; Ryu, B. I., Improvement of resistive memory switching in NiO using IrO2. Appl. Phys. Lett. 88 (23), 232106, 2006.
47.Choi, B. J.; Jeong, D. S.; Kim, S. K.; Rohde, C.; Choi, S.; Oh, J. H.; Kim, H. J.; Hwang, C. S.; Szot, K.; Waser, R.; Reichenberg, B.; Tiedke, S., Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98 (3), 033715, 2005.
48.Liao, Z. M.; Hou, C.; Zhang, H. Z.; Wang, D. S.; Yu, D. P., Evolution of resistive switching over bias duration of single Ag2S nanowires. Appl. Phys. Lett. 96 (20), 203109, 2010.
49.Liu, X. H.; Mayer, M. T.; Wang, D. W., Negative differential resistance and resistive switching behaviors in Cu2S nanowire devices. Appl. Phys. Lett. 96 (22), 223103, 2010.
50.Liu, S. Q.; Wu, N. J.; Ignatiev, A., Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76 (19), 2749-2751, 2000.
51.Watanabe, Y.; Bednorz, J. G.; Bietsch, A.; Gerber, C.; Widmer, D.; Beck, A.; Wind, S. J., Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl. Phys. Lett. 78 (23), 3738-3740, 2001.
52.Schindler, C.; Valov, I.; Waser, R., Faradaic currents during electroforming of resistively switching Ag-Ge-Se type electrochemical metallization memory cells. Phys. Chem. Chem. Phys. 11 (28), 5974-5979, 2009.
53.Gomes, H. L.; Benvenho, A. R. V.; de Leeuw, D. M.; Colle, M.; Stallinga, P.; Verbakel, F.; Taylor, D. M., Switching in polymeric resistance random-access memories (RRAMS). Org. Electron. 9 (1), 119-128, 2008.
54.Guan, W. H.; Long, S. B.; Jia, R.; Liu, M., Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide. Appl. Phys. Lett. 91 (6), 062111, 2007.
55.Sawa, A., Resistive switching in transition metal oxides. Mater. Today 11 (6), 28-36, 2008.
56.Park, G. S.; Li, X. S.; Kim, D. C.; Jung, R. J.; Lee, M. J.; Seo, S., Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl. Phys. Lett. 91 (22), 222103, 2007.
57.Ahn, S. E.; Lee, M. J.; Park, Y.; Kang, B. S.; Lee, C. B.; Kim, K. H.; Seo, S.; Suh, D. S.; Kim, D. C.; Hur, J.; Xianyu, W.; Stefanovich, G.; Yin, H. A.; Yoo, I. K.; Lee, A. H.; Park, J. B.; Baek, I. G.; Park, B. H., Write current reduction in transition metal oxide based resistance-change memory. Adv. Mater. 20 (5), 924, 2008.
58.Hirose, Y.; Hirose, H., POLARITY-DEPENDENT MEMORY SWITCHING AND BEHAVIOR OF AG DENDRITE IN AG-PHOTODOPED AMORPHOUS AS2S3 FILMS. J. Appl. Phys. 47 (6), 2767-2772, 1976.
59.Billen, J.; Steudel, S.; Muller, R.; Genoe, J.; Heremans, P., A comprehensive model for bipolar electrical switching of CuTCNQ memories. Appl. Phys. Lett. 91 (26), 263507, 2007.
60.Goux, L.; Lisoni, J. G.; Jurczak, M.; Wouters, D. J.; Courtade, L.; Muller, C., Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers. J. Appl. Phys. 107 (2), 024512, 2010.
61.Sawa, A.; Fujii, T.; Kawasaki, M.; Tokura, Y., Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85 (18), 4073-4075, 2004.
62.Sze, S. M., Physics of Semiconductor Devices 2nd Edition. p.402, 1981.
63.Wu, W. T.; Chen, J. S.; Wu, J. J., Synthesis of Tungsten Oxide Powders Via Thiourea-Assisted Route: Tailoring from Hierarchical Microspheres to Mesoporously Structured Nanoparticles. J. Am. Ceram. Soc. 93 (8), 2268-2273, 2010.
64.Gao, Q. Y.; Wang, G. P.; Sun, Y. Y.; Epstein, I. R., Simultaneous tracking of sulfur species in the oxidation of thiourea by hydrogen peroxide. J. Phys. Chem. A 112 (26), 5771-5773, 2008.
65.Avendano, E.; Azens, A.; Niklasson, G. A.; Granqvist, C. G., Nickel-oxide-based electrochromic films with optimized optical properties. J. Solid State Electrochem. 8 (1), 37-39, 2003.
66.Ahn, H. J.; Shim, H. S.; Kim, Y. S.; Kim, C. Y.; Seong, T. Y., Synthesis and characterization of NiO-Ta2O5 nanocomposite electrode for electrochromic devices. Electrochem. Commun. 7 (6), 567-571, 2005.
67.Uplane, M. M.; Mujawar, S. H.; Inamdar, A. I.; Shinde, P. S.; Sonavane, A. C.; Patil, P. S., Structural, optical and electrochromic properties of nickel oxide thin films grown from electrodeposited nickel sulphide. Appl. Surf. Sci. 253 (24), 9365-9371, 2007.
68.Bouessay, I.; Rougier, A.; Beaudoin, B.; Leriche, J. B., Pulsed Laser-Deposited nickel oxide thin films as electrochromic anodic materials. Appl. Surf. Sci. 186 (1-4), 490-495, 2002.
69.Lin, S. H.; Chen, F. R.; Kai, J. J., Electrochromic properties of nano-composite nickel oxide film. Appl. Surf. Sci. 254 (11), 3357-3363, 2008.
70.Lou, X. C.; Zhao, X. J.; Feng, J. M.; Zhou, X. D., Electrochromic properties of Al doped B-subsituted NiO films prepared by sol-gel. Prog. Org. Coat. 64 (2-3), 300-303, 2009.
71.Mahmoud, S. A.; Aly, S. A.; Abdel-Rahman, M.; Abdel-Hady, K., Electrochromic characterisation of electrochemically deposited nickel oxide films. Physica B 293 (1-2), 125-131, 2000.
72.Maruyama, T.; Arai, S., THE ELECTROCHROMIC PROPERTIES OF NICKEL-OXIDE THIN-FILMS PREPARED BY CHEMICAL-VAPOR-DEPOSITION. Sol. Energy Mater. Sol. Cells 30 (3), 257-262, 1993.
73.Tenent, R. C.; Gillaspie, D. T.; Miedaner, A.; Parilla, P. A.; Curtis, C. J.; Dillon, A. C., Fast-Switching Electrochromic Li+-Doped NiO Films by Ultrasonic Spray Deposition. Journal of the Electrochemical Society 157 (3), H318-H322, 2010.
74.Lee, M. K.; Fan, C. H., Electrochromic Characterization of Nickel Oxide Films Grown on ITO/Glass by Liquid Phase Deposition. Journal of the Electrochemical Society 156 (10), D395-D399, 2009.
75.Purushothaman, K. K.; Muralidharan, G., NANOPOROUS NiO BASED ELECTROCHROMIC WINDOW. Funct. Mater. Lett. 2 (3), 143-145, 2009.
76.Lou, X. C.; Zhao, X. J.; Xiong, Y. L.; Sui, X. T., The influence of annealing on electrochromic properties of Al-B-NiO thin films prepared by sol-gel. Journal of Sol-Gel Science and Technology 54 (1), 43-48, 2010.
77.Lou, X. C.; Zhao, X. J.; Xiong, Y. L.; Sui, X. T., The influence of annealing on electrochromic properties of Al-B-NiO thin films prepared by sol-gel. J. Sol-Gel Sci. Technol. 54 (1), 43-48, 2009.
78.Xia, X. H.; Tu, J. P.; Zhang, J.; Wang, X. L.; Zhang, W. K.; Huang, H., Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition. Sol. Energy Mater. Sol. Cells 92 (6), 628-633, 2008.
79.Lee, H. D.; Magyari-Kope, B.; Nishi, Y., Model of metalic filament formation and rupture in NiO for unipolar switching. Phys. Rev. B 81 (19), 4, 2010.
校內:2016-08-31公開