| 研究生: |
吳俊穎 Wu, Chun-Ying |
|---|---|
| 論文名稱: |
任意曲面3D微結構之準分子雷射加工及光學應用 Excimer Laser Microfabrication of 3D Microstructures and their Optical Applications |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 微機電系統工程研究所 Institute of Micro-Electro-Mechancial-System Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 非球面微透鏡 、孔洞面積法 、微光學元件 、折射式微透鏡 、準分子雷射加工 |
| 外文關鍵詞: | Hole Area Modulation Method, Refractive Microlens, Micro-Optic Device, Aspheric Microlens, Excimer Laser Micromachining |
| 相關次數: | 點閱:148 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用準分子雷射微細加工技術製作任意曲面形貌之三維微結構,主要研究重點是利用「準分子雷射行星式加工法」與「改良式孔洞面積法」製作軸對稱以及非軸對稱之三維微結構,並將其應用於折射式光學微透鏡,證明此二種準分子雷射加工法應用於製作折射式光學微透鏡之可行性與精確度。
在「準分子雷射行星式加工法」方面,利用特殊的光罩設計及工件的自轉與公轉,使雷射投射在工件上的呈現三維的連續分布,快速且精確地製作軸對稱非球面微透鏡與微型光纖耦合透鏡,實驗結果顯示此加工法所製作之微透鏡具有表面形貌控制性佳、表面粗糙度僅約10nm、光學特性良好等優點,證明此準分子雷射行星式加工法應用於製作折射式微光學元件之發展潛力。
於「改良式孔洞面積法」方面,藉由改變雷射加工時的雷射加工路徑參數,證明採用高斯分佈格點之改良式孔洞面積法可有效改善一般採整齊格點法之孔洞面積法表面粗糙度較大的缺點,但此一改良式孔洞面積法仍具有表面形貌加工精度較差的缺點,若能改善此一問題,本加工法將可成功應用於製作雷射二極體準直透鏡等非軸對稱微光學元件。
This study applies excimer laser micro-machining technology for manufacturing 3D arbitrary microstructures. Two kinds of excimer laser machining technology are presented to fabricating microlenses in order to verify the feasibility and accuracy of these excimer laser micromachining processes.
First, “Excimer Laser Planetary Contour Scanning Method” is applied to manufacturing axially symmetrical aspheric microlenses. The basic idea is based on a specific mask design method and a sample rotation method which includes both self-spinning and circular revolving to provide a probability function of laser machining. The probability function created by the planetary scanning assures a continuous, smooth, and precise surface profile to the machined microstructures. The surface profiles are measured and compared with their theoretical counterparts. Excellent agreements both in profile shapes and dimensions are achieved. The machining profile accuracy and surface smoothness of this proposed micromachining method show great potentials in fabricating micro-optic components such as aspheric microlenses or microlens arrays.
In order to fabricate non-axially symmetrical microstructures, the excimer laser machining method known as “Hole Area Modulation Method” is presented and modified to realize this purpose. This thesis modifies parameters of machining contour paths and mask design process to minimize the roughness of machined microstructures. The experimental results show that this “Modified Hole Area Modulation Method” could improve the roughness of machined microstructures successfully but still has some problem on machining accuracy. By overcoming these drawbacks, this machining method must have great potentials in manufacturing non-axially symmetrical micro-optical devices such as laser diode collimator in the future.
[1] 林郁欣, 胡一軍, 周曉宇, 微系統製程技術發展, 科儀新知, 第25卷第4期, 民國93年.
[2] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet Fabrication of Microlens Arrays,” IEEE Photonic Technology Letters, Vol. 6, No.9, pp.1112-1114, 1994.
[3] Zoran D. Popovic, Robert A. Sprague, and G. A. Neville Connell, “Technique For Monolithic Fabrication of Microlens Arrays,” Appl. Opt. Vol. 27, No.7, pp.1281-1297, 1988.
[4] Sylvain Lazare, John Lopez, Jean-Marie Turlet, Maria Kufner, Stefan Kufner, and Pierre Chavel, “Microlenses Fabricated by Ultraviolet Excimer Laser Irradiation of Poly (methyl methacrylate) Followed by Styrene Diffusion,” Appl. Opt. Vol. 35, No.22, pp.4471-4475, 1996.
[5] Michael Frank, Maria Kufner, Stefan Kufner, and Markus Testorf, “Microlenses in Polymethyl Methacrylate With High Relative Aperture,” Appl. Opt. Vol. 30, No.19, pp.2666-2667, 1991.
[6] Walter Daschner, Pin Long, and Robert Stein, “General Aspheric Refractive Micro-Optics Fabricated by Optical Lithography Using a High Energy Beam Sensitive Glass Gray-Level Mask,” J. Vac. Sci. Technol. B., Vol. 14, No.6, pp.3730-3733, 1996.
[7] Nicholas F. Borrelli, David L. Morse, Robert H. Bellman, and Walter L. Morgan, “Photolytic Technique For Producing Microlenses in Photosensitive Glass,” Appl. Opt. Vol. 24, No.16, pp.2520-2525, 1985.
[8] Slawomir Zlolkowski, “Contactless Embossing of Microlenses-a Parameter Study,” Opt. Eng., Vol. 42, No.5, pp.1451-1455, 2003.
[9] K. Zimmer, D. Hirsch, F. Bigl, “Excimer Laser Machining for the Fabrication of Analogous Microstructures,” Appl. Surf., Vol. 96-98, pp.425-429, 1996.
[10] Kris Naessens, Heidi Ottevaere, Roel Baets, Peter Van Daele, and Hugo Thienpont, “Direct Writing of Microlenses In Polycarbonate With Excimer Laser Ablation,” Appl. Opt. Vol. 42, No.31, pp.6349-6359, 2003.
[11] K. Naessens, Heidi Ottevaere, P. Van Daele, R. Baets, “Flexible Fabrication of Microlenses In Polymer Layers With Excimer Laser Ablation,” Appl. Surf., Vol. 208-209, pp.159-164, 2003.
[12] T. Masuzawa, J. Olde-Benneker, J. J. C. Eindhoven, “A New Metod for Three Dimensional Excimer Laser Micromachining, Hole Area Modulation (HAM),” Annals of the CIRP, Vol. 49, pp.139-142, 2000
[13] Kyung Hyun Choi, Johan Meijer, Takahisa Masuzawa, Dae-Hyun Kim, “Excimer laser micromachining for 3D microstructure,” Journal of Materials Processing Technology, Vol. 149, pp.561-566, 2004
[14] 微光學設計與工程應用技術課程講義, 國科會精密儀器發展中心
[15] 國科會精密儀器發展中心, 微機電系統技術與應用, 全華科技圖書公司, 台北, 民國92年.
[16] James Brannon, Excimer Laser Ablation and Etching, Education Committee, American Vacuum Society (1993).
[17] Ampere A. Tseng, Ying-Tung Chen, Kung-Jeng Ma, “Fabrication of high-aspect-ratio microstructures using excimer laser,” Optics and Lasers in Engineering, Vol. 41, pp.827-847, 2004.
[18] 郭晉良, 李永春, 準分子雷射加工微型3D立體結構, 國立成功大學機械工程研究所碩士論文, 民國91年.
[19] 陳峻明, 李永春, 折射式微透鏡之準分子雷射LIGA製程開發與光學檢測, 國立成功大學機械工程研究所碩士論文, 民國93年.
[20] Joseph M. Geary, Introduction to Lens Design: With Practical ZEMAX Examples, Willmann-Bell, Inc., USA (2002).
[21] Warren J. Smith, Modern Optical Engineering, McGraw-Hill, USA (2000).
[22] Fischer, Robert Edward, Optical Systems Design, McGraw-Hill, USA (2000).
[23] NanoFocus AG, uSurf Operation Manual, German.