| 研究生: |
洪振沖 Horng, Jenn-Chong |
|---|---|
| 論文名稱: |
加勁邊坡的地震穩定性探討 Seismic Stability of Reinforced Slopes |
| 指導教授: |
常正之
Charng, Jeng-Jy 黃景川 Huang, Ching-Chuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 鋼針 、擬靜態地震穩定性 、抗震等級 、傾斜試驗 、加勁模型邊坡 |
| 外文關鍵詞: | seismic-resistance level, tilting test, pseudo-static seismic stability, steel rod, reinforced model slope |
| 相關次數: | 點閱:92 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用直徑1.96mm 的鋼針均勻排列為邊坡背填材料,進行一系列的加
勁邊坡傾斜試驗,研究面板勁度(EI )、加勁長度(Lr )及加勁材勁度(Er )對加勁
邊坡擬靜態地震穩定性的影響。試驗採用數種不同抗彎勁度的鋁製面板、兩種不
同張力勁度及摩擦角的加勁材,作為研究加勁模型邊坡在極限傾斜角(即擬靜態
臨界地震係數)時各種因素的影響。
研究發現,在加勁材界面摩擦角( r
d )非常小時,增加面板勁度或加勁材張
力勁度,加勁邊坡的極限傾斜角度幾乎不受影響,在此情況下,加勁材界面摩擦
角在牆體擬靜態地震穩定中扮演重要的角色。本研究中,在不考慮界面摩擦角
( r
d )及面板厚度( tm )的情況下,加勁材長度對牆高比值(Lr /Ht )從0.52 增加至
0.83,對加勁邊坡的極限傾斜角度產生相當顯著的提升,此效果除扮演提升極限
傾斜角f
q 的主要角色外,對於提升加勁邊坡擬靜態地震穩定性也是一個有效可
行的方式。
提升加勁材張力勁度,結合面板後方加勁區的整體化作用,對於抬昇破壞角
度f
q (或khc )僅有小量的增加。對於面板與加勁材各種組合的參數研究,就加勁
邊坡極限抬昇角度來說,面板勁度扮演一個次要角色,並且只有在足夠高的加勁
材界面摩擦角或相對短的加勁(Lr = 0.52Ht )使用時才有此現象。
根據不同加勁材及面板勁度的加勁邊坡的極限傾斜角及牆體變形模式,可將
加勁邊坡區分為三個抗震等級(SRL)。欲達到極限傾斜角度f
q ³20° (或臨界地震
係數 hc k ³0.36)的抗震最高等級(SRL=1),高加勁界面摩擦角( r
d =30°)是首要的
前提條件,而加勁材長度及勁度則扮演次要角色。當採用高張力勁度加勁材時,
底部滑動破壞伴隨著在坡面下方三分之ㄧ區域內處發生最大邊坡變形,此只發生
在低地震抵抗等級的邊坡上,即SRL=2 或3。
對於採用高張力勁度加勁材料的加勁邊坡,最大邊坡變形發生在坡面下方三
分之ㄧ區域內的現象可用來辨識具有相對較低地震體抗能力的邊坡。採用低張力
勁度加勁材的加勁邊坡,在不考慮地震抵抗等級時,面板下方三分之ㄧ區域內發生最大變形是邊坡變形的主要模式。當使用具有高內摩擦角( r
d =30°)的加勁材
時,面板彎曲勁度可適度影響抗震等級,但當使用相對低的內摩擦角( r
d =20°及
15°)的加勁材時,則對抗震等級並無影響。
A series of tilting tests on reinforced model slopes backfilled with regularly
packed 1.96-mm-diameter steel rods were performed to investigate the relative
importance of facing rigidity( EI ), reinforcement length( Lr ) and reinforcement
stiffness( Er ) to the pseudo-static seismic stability of reinforced slopes. Aluminum
full-height panel facings having greatly varied bending rigidities, and reinforcing
materials having significantly different tensile stiffness and interface friction angles
were used in the tests to investigate their effect on the ultimate tilting angles (or
pseudo-static-based critical seismic coefficient) of the reinforced model slopes.
It was found that among the factors investigated, the interface friction angle of
reinforcing materials( r
d ) plays an essential role in the pseudo-static seismic stability
of the walls in the sense that when the interface friction angle of the reinforcement( r
d )
was too low, the increase in facing rigidity and/or tensile stiffness of reinforcement
resulted in a negligible effect on the ultimate tilting angle of the reinforced slopes.
Increasing reinforcement length to wall height ratios (Lr /Ht ) from 0.52 to 0.83
provided substantial increase in f
q regardless of the interface friction angles ( r
d )
and facing thickness ( tm ) investigated in the study. This effect also played a major
role in terms of the increase in qf, and is also a promising way of increasing the
pseudo-static seismic stability of reinforced slopes.
Increasing the tensile stiffness of reinforcing material results in a small-moderate
increase of f
q (or khc ) associated with the formation of a monolithilized reinforced
zone behind the facing. For the ranges of facing and reinforcement parameters
investigated, facing rigidity plays a secondary role regarding the ultimate tilting angle
of reinforced slopes and is realized only when a sufficiently high interface angle of
reinforcement or a relatively short reinforcement length ( Lr = 0.52Ht ) is used.
Failure mechanisms of reinforced slopes with various seismic-resistance
capacities were examined based on the results of tilting table tests. Three
seismic-resistance levels (SRL) for slopes reinforced using various reinforcement materials and facing rigidities were identified based on various ultimate tilting angles
and modes of wall deformation. It was found that a high reinforcement interface
friction angle ( r
d = 30°) is a prerequisite for attaining the highest level of seismic
resistance (namely, SRL = 1) with an ultimate tilting angle f
q ³ 20° (or a critical
seismic coefficient, khc ³ 0.36). Reinforcement length and reinforcement stiffness
play secondary roles, in the sense that these two factors are optional in attaining the
highest level of seismic resistance. When a high tensile stiffness reinforcement was
used, a base sliding failure associated with a maximum slope face deformation
occurred at the lower third portion of the slope face, which only occurred for the
slopes with lower seismic-resistance levels, namely, SRL = 2 or 3.
Therefore, for a slope reinforced using a high tensile stiffness reinforcement, a
maximum slope deformation at the lower third portion of the slope face may be used
to identify a ‘less robust’ slope with a relatively low seismic-resistance capacity. For
slopes reinforced with a low tensile stiffness reinforcement, a maximum deformation
occurred at the lower third portion of the facing is a dominant mode of deformation,
regardless of the seismic-resistance level. The bending rigidity of the facing may
moderately influence the seismic-resistance level when using a reinforcement sheet
with a high interface friction angle ( r
d = 30°), but it has no influence on the
seismic-resisting level when using reinforcement sheets with relatively low surface
friction angles of r
d = 20° and 15°.
1.周南山(1993) ”地工合成物加勁牆分析設計之探討與評估”, 地工技術, 第43期,第32-42頁。
2.陳景文、吳宗欣、Claybourn, A. F. (1993) ”不同地工織物擋土牆設計方法比較”, 地工技術, 第43期,第43-49頁。
3.孟繁羽(1996)”探討壁面勁度與主動土壓力關係之鋼針模型試驗”,碩士論文,國立成功大學土木工程學研究所,台南。
4.李咸亨、謝宗榮(1997) ”加勁擋土牆之抗震設計方法”, 地工技術, 第43期,第11-22頁。
5.李咸亨(1997) ”神戶地震中加勁擋土牆的行為”, 現代營建, 第210期,第24-29頁。
6.周育慶(1997)”鋼針模型擋土牆之主動土壓力試驗與分析”,碩士論文,國立成功大學土木工程學研究所,台南。
7.李咸亨、連偉智(1999) ”加勁擋土牆之動態行為解析”, 第八屆大地工程學術研究討論會, 第886-893頁。
8.洪勇善(1999)“土釘擋土結構之力學行為”, 博士論文,國立台灣大學土木工程學研究所,台北。
9.陳榮河(2001)”極限平衡狀態之土壓力理論” 地工技術,第85期 pp.5-12
10.李維峰、黃亦敏(2001)”加勁擋土牆動態設計與研發” 地工技術,第85期 pp.13-24
11.黃景川、陳昱宏、周禮輝(2001) ”公路擋土系統在強震下之變位與補強對策”, 地工技術, 第85期,第13-24頁。
12.洪勇善(2003)“土釘加勁陡坡破壞機制與耐震行為” 地工技術,第98期 pp.17-26
13.洪振沖、常正之、黃景川(2005)”探討加勁邊坡穩定性及變形行為之模型試驗與分析”第11屆大地工程研討會。
14.ASTM D2487 :“Standard test method for classification of soils for engineering purposes” American Society for Testing and Materials.
15.Bathurst, R. J. (1998) :“Segmental Retaining walls-Seismic Design Manual”1st ed., the National Concrete Masonry Association, Hemdon, VA.
16.Bathurst, R. J. and Hatami, K. (1998). Seismic response analysis of a geosynthetic-reinforced soil retaining wall. Geosynthetic International, Vol. 5, Nos. 1-2, 127-166.
17.Bathurst, R. J. and Simac, M. R. (1997) “Design and performance of the facing column for geosynthetic reinforced segmental retaining walls” Mechanically Stabilized Backfill, Wu ed., pp. 193-208.
18.Bathurst, R. J., Cai, Z., Alfaro, M. and Pelletier, M. (1997) “Seismic design issues for geosynthetic reinforced segmental retaining walls”, Mechanically Stabilized Backfill, Wu ed., Balkema, Rotterdam, pp. 79-97.
19.Bathurst, R. J., El-Emam, M. and Mashhour, M. M. (2002a) : “Shaking table model study on the dynamic response of reinforced soil walls,” Proc. 7th Int. Geosynthetic Conf., Nice, France, Vol. 1, pp. 99-102.
20.Bathurst, R. J., Hatami, K. and Alfaro, M. C. (2002b) : “Geosynthetic-reinforced soil walls and slopes-seismic aspects.” Geosynthetics and Their Applications (ed. by Shukla S. K.), Thomas Telford, Ch. 14, 327-392.
21.Cai, Z. and Bathurst, R.J. (1996) “Deterministic sliding block methods for estimating seismic displacements of earth structures”, Soil Dynamics and Earthquake Engineering, Vol.15, pp.255-268.
22.Gassler, G. (1988) “Soil nailing-theoretical basis and practical design” Proc. Int. Geotech. Sympo. Theory and Practice of Earth Reinforcement, Fukuoka, Kyushu, Yamanouchi, T., Miura, N. and Ochiai, H. eds., Balkema, Rotterdam, pp. 283-288.
23.Horii, K., Kishida, H., Tateyama, M. and Tatsuoka, F. (1994) “Computerized design method for geosynthetic-reinforced soil retaining walls for railway embankments” Recent Case Histories of Permenant Geosynthetic-Reinforced Soil Retaining Walls, Tatsuoka, F. and Leshchinsky, D., Editors, Balkema, Proc. Seiken Sympo. No. 11, Tokyo, Japan, Nov., 1992, pp. 205-218.
24.Huang, C. C., and Chen, Y.H (2004) “Seismic stability of soil retaining walls situated on slope”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130,No. 1, pp.45-57.
25.Huang, C. C. and Wang, W. C. (2005) “Seismic displacement charts for the performance-based assessment of reinforced soil walls”, Geosynthetic International, Vol. 12, No. 4, pp. 176-190.
26.Huang, C. C., Chou, L. H. and Tatsuoka, F. (2003) “Seismic displacements of geosynthetic-reinforced soil modular block walls”, Geosynthetics International, Vol. 10, No. 1., pp. 2-23.
27.Huang, C. C., Menq, F. Y., and Chou, Y. C. (1999) “The effect of the bending rigidity of a wall on lateral pressure distribution” Can. Geotech. J., Vol. 36, pp. 1039-1055.
28.Huang, C. C., Horng , J. C., and Charng, J. J. (2008) “Seismic stability of reinforced slopes:effects of reinforcement properties and facing rigidity” Geosynthetics International, Vol. 15, No. 2., pp. 107-118
29.Japanese Railway Technical Research Institute (JRTRI), (1999) “Design guideline for railway structures-Aseismic design”, Maruzen, 325-326 (in Japanese).
30.Jenq-Jy Charng, Jenn-Chong Horng, June-Shen Leau(2004)”On the Behavior of Reinforced Retaining Structure via Steel-Rod Model”,The 28th National Conference on Theoretical and Applied Mechanics, pp.785-792
31.Jewell, R. A. and Pedley, M. J. (1992) “Analysis for soil reinforcement with bending stiffness” J. Geotech. Engrg., Vol. 118, No. 10, pp. 1505-1528.
32.Juran, I. And Chen, C. L. (1989) “Strain compatibility design method for reinforced earth walls” J. Geotech. Engrg., ASCE, Vol. 115, No. 4, pp. 435-456.
33.Juran, I., Baudrand, G., Farrag, K. and Elias, V. (1990) “Design of soil nailed retaining structures” Proc. Design and Performance of Earth Retaining Structures, ASCE, Geotechnical Special Publication No. 25, pp. 644-659.
34.Koseki, J., Munaf, Y., Tatsuoka, F., Tateyama, M., Kojima, K. and Sato, T. (1998) “Shaking and tilting tests of geosynthetic-reinforced soil and conventional type retaining walls”, Geosynthetics International, Vol. 5, Nos. 1-2, pp. 73-96.
35.Ling, H. I., Leshchinsky, D. , and Perry, E. B. (1997) ”Seismic design and performance of geosynthetic-reinforced soil structures”, Geotechnique, Vol. 47, No. 5, pp.933-952.
36.Ling, H. I., and Leshchinsky, D. (1998) ”Effects of vertical acceleration on seismic design of geosynthetic-reinforce soil structures”, Geotechnique, Vol. 48, No. 3, pp.347-373.
37.Matsuoka, H., Liu, S.H., and Ohashi, T.(1999) “Model test on granular soil slope and determination of strength parameters under low confining stresses slope surface.”,Slope Stability Engineering, pp. 681-686.
38.Matsuo, O., Tsutsumi, T., Yokoyama, K. and Saito, Y. (1998) “Shaking table tests and analyses of geosynthetic-reinforced soil retaining walls”, Geosynthetics International, Vol.5, Nos.1-2, pp. 97-126.
39.Mitchell, J. K. and Villet, C. B. (1987) “Reinforcement of earth slopes and embankments” NCHRP Report 290, Transportation Research Board, Washing ton, D.C.
40.Richardson, G. N. and Lee, K. L. (1975) “Seismic design of reinforced earth walls” Journal of the Geotechnical Engineering Division, Proceedings of ASCE, Vol. 101, NO. GT2, pp. 167-188.
41.Rowe, P. W. (1962) “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact” Proceedings of the Royal Society of London, Series A, Vol. 269, pp. 500-527.
42.Rowe, P. W. (1969) “The relation between the shear strength of sands in triaxial compression, plane strain and direct shear” Geotechnique, Vol. 19, No. 1, pp. 75-86.
43.Shewbridge, S. E. and Sitar, N. (1990) “Deformation-based model for reinforced sand” J. Geotech. Engrg., ASCE, Vol. 116, No. 7, pp. 1153-1170.
44.Schlosser, F., Untereiner, P. and Plumelle, C. (1992) “French research program CLOUTERRE on soil nailing” Geotechnical Special Publication, No. 30, ASCE, New York, pp. 739-750.
45.Shen, C. K., Herrmann, L. R., Romstad, K. M., Bang, S., Kim, Y. S. and Denatale, J. S. (1981) “In situ earth reinforcement lateral support system” Report No. 81-03, Department of Civil Engineering, University of California at Davis.
46.Tasuoka, F., Tateyama, M., Uchimura, T., and Koseki, J. (1996a) ”Geosynthetic-reinforced soil retaining walls as important permanent structures”, Geosyntthetics International, pp.3-24.
47.Tasuoka, F., Tateyama, M., and Koseki, J. (1996b) ”Performance of soil retaining walls for railway embankments”, Special issue of Soils and Foundations, pp.311-324.
48.Tatsuoka, F. Koseki, J., Tateyama, M., Munaf, Y., and Horii, K. (1998) : “Seismic stability against high seismic loads of geosynthetic-reinforced soil retaining structures”, Keynote Lecture, 6th Int. Conf. Geosynthetics, 1998, Atlanta, pp. 103-142.
49.Tatsuoka, F. (1993) “Roles of facing rigidity in soil reinforcing” Keynote Lecture, Proceedings of the International Symposium on Earth Reinforcement Practice, IS Kyushu ’92, Ochiai et al. (eds), Balkema, Rotterdam, 2, 831-870.
50.Tatsuoka, F., Tateyama, M. and Murata, O. (1989) “Earth retaining wall with a short geotextile and a rigid facing”, Proc. 12th Int. Conf. on SMFE, Rio de Janeiro, Vol.12, No.2, pp.1311-1314.
51.Terzaghi, K. and Peck, R.B. (1948) “Soil mechanics in engineering practice” John Wiley and sons.
52.Terzaghi, K. (1941) “General wedge theory of earth pressure” Transactions of the American Society of Civil Engineering, Vol. 67, No. 106, pp. 68-97.
53.Vidal, H. (1978). The development and future of reinforced earth. Proceedings of the Symposium on Earth Reinforcement, ASCE Annual Convention, Pittsburgh, PA, pp. 1-61.
54.Vucetic, M., Tufenkjian, M.R. Felio,G.Y., Barzar, P. and Chapman, K.R. (1997) “Analysis of soil-nailed excavations stability during the 1989 Loma Prieta earthquake in California” Report to NEHRP Congress : The Loma Prieta, California, Earthquake of October 17, 1989.
55.Whitman, R.V. (1990) “Seismic design and behavior of gravity retaining walls” Proc. Design and Performance of Earth Retaining Structures. Lambe, P.C. and Hansen, A. eds., ASCE, Reston, Va., 817-842.