| 研究生: |
張仲甫 Chang, Chung-Fu |
|---|---|
| 論文名稱: |
積體式三-氮族化合物半導體系列氣體感測器之研製 Fabrication of Integrated Ⅲ-Nitride Compound Semiconductor Based Gas Sensors |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 氮化鋁鎵 、積體式 、氣體感測器 、蕭特基接觸式 |
| 外文關鍵詞: | Gas Sensors, Integrated, AlGaN, Schottky |
| 相關次數: | 點閱:52 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數十年來,各種不同類型的氣體感測器已被廣泛的研究與開發。而自
蕭特基接觸式與電阻式為基礎的氣體感測器被提出之後,隨著半導體製程的進步,體積小、靈敏度高,可大量生產的半導體式氣體感測器已逐漸成為研究主流。
本論文中所提出的元件是以不同的觸媒材料,像鈀、鉑和氧化鋅製作
成積體式的氣體感測器,分別去量測不同的氣體,如氫氣、氨氣以及二氧化氮,並去研究其感測與響應特性。
首先,探討鈀/氮化鋁鎵/氮化鎵蕭特基二極體式感測器在不同溫度下的氫氣感測特性。此元件展現良好的感測性能,包含高相對靈敏度比、大電流變化量、寬廣的反向操作電壓區間及快速響應時間。
其次,探討鉑/氮化鋁鎵/氮化鎵蕭特基二極體式感測器在不同溫度下的氨氣感測特性,鉑金屬除了在氫氣上擁有感測特性外,還具備有偵測氨氣的能力。特別是在高溫時,此元件更擁有快速的響應時間。
第三,研究氧化鋅/氮化鋁鎵/氮化鎵電阻式感測器在不同溫度下的二氧化氮感測特性,因為二氧化氮是氧化性的氣體,會使得感測器的阻值上升。
對此我們製做了阻值較小的電阻式感測器,以便提升其靈敏度,而大的電流變化量也使得感測器較不容易受到雜訊的影響。
最後,由實驗結果我們可以得知,當感測氣體(氫氣、氨氣與二氧化氮)通入時,利用觸媒金屬對氣體選擇性的不同,可以得知通入的氣體為何者,而在未來此感測元件對於智慧型感測器及微機電系統應用具有良好之發展潛力。
Over the past decades, different types of gas sensors were developed. With the quick development of the fabrication technologies, semiconductor based gas sensors with small size and high sensitivity have become the mainstream of the research process.
The studied integrated sensors consisted of different catalytic metals such as Pd, Pt and ZnO. The studied devices are capable of monitoring different gases such as hydrogen, ammonia, and nitrogen dioxide. The AlGaN/GaN layer was used because of its advantages including large band gap (4.3eV), wide operation temperature region, good chemical stability, and high density of two-dimensional electron gas.
First, the hydrogen-detection characteristics of a Pd/AlGaN/GaN Schottky diode-type sensor were studied and demonstrated at different temperatures. This device exhibited good sensing performance including high relative sensitivity ratio, large current variation, widespread reverse voltage regime, and fast response time.
Second, the ammonia-detection characteristics of a Pt/AlGaN/GaN Schottky diode-type sensor were studied and demonstrated. Pt catalytic metal dissociates not only hydrogen molecules but also ammonia molecules. At high temperatures, the device exhibited fast transient response time.
Finally, the nitrogen dioxide-detection characteristics of a ZnO/AlGaN/GaN resistor-type sensor were studied and demonstrated. Based on the sensing mechanism of metal-oxide
material, the oxidizing property of nitrogen dioxide leads to the decrease of ZnO conductance.
In this research, the resistor-type sensor was fabricated with lower resistance to increase the sensitivity. Besides, sensors with large current variation exhibit larger margins to noise interference. Consequently, the integrated sensors show the promise for smart gas sensors and micro-electro-mechanical system (MEMS) application.
Reference
[1] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen
sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, pp. 10-18,
2002.
[2] M. Duffy, W. G. Hurley, J. Kubik, S. O’Reilly,and P. Ripka, “Current sensor in
pcb technology,” Sensors, 2002 Proceedings of IEEE, vol. 18, pp. 779-784,
2002.
[3] A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A. L. Spetz, and P. Tobias,
“Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE
Electron Device Lett., vol. 18, pp. 287-289, 1997.
[4] K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,”
Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International, vol.
2, pp. 431-440, 1997.
[5] P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, pp. 223-237,
1997.
[6] N. Yamazoe and N. Miuta, “Development of gas sensors for environmental
protection,” IEEE Tran. Compo. Packag. Manuf. Technol. Part A vol. 18, pp.
252-256, 1995.
[7] A. Mandelis and C. Christofides, “Physics, chemistry and technology of solid
state gas sensor devices, ,” ch 3, New York: John Wily & Sons (1993).
[8] S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultra sensitive silicon
pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, pp.
825-835, 1992.
[9] W. Gopel, J. Hesse, and J. N. Zemel, “Sensors,” vol. 1, ch 10, Weinheim: VCH
press (1991).
[10] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas
detection,” J. Appl. Phys., vol. 68, pp. 1-30, 1990.
[11] W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas
sensors, ” IEEE Trans. Electron Devices, vol. 35, pp. 793-799, 1988.
[12] S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp.
329-341, 1982.
[13] W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas
37
sensors,” IEEE Trans. Electron Devices, vol. 35, pp. 793-799, 1988.
[14] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas
detection,” J. Appl. Phys., vol. 68, pp. R1-R30, 1990.
[15] M. Duffy, W. G. Hurley, J. Kubik, S. O’Reilly, and P. Ripka, “Current sensor in
pcb technology,” Sensors, 2002 Proceedings of IEEE, vol.18, pp. 779-784,
2002.
[16] S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp.
329-341, 1982.
[17] W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas
sensors, ” IEEE Trans. Electron Devices, vol. 35, pp. 793 –799, 1988.
[18] S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultra sensitive silicon
pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, pp.
825-835, 1992.
[19] K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,”
Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International,
vol.2, pp. 431 –440L, 1997.
[20] A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A. L. Spetz, and P. Tobias,
“Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE
Electron Device Lett., vol, 18, pp. 287-289, 1997.
[21] C. C. Chang, and Y. E. Chen, “Fabrication of high sensitivity ZnO thin film
ultrasonic devices by electrochemical etch techniques,” IEEE Trans. Ultrason.
Ferroelectr. Freq. Control, vol. 44, pp. 624-628, 1997.
[22] D. Kohl, Function and application of gas sensors, topical review,J. Phys. D34
(2001) R125–R149.
[23] A. Dubbe, Fundamentals of solid state ionic micro gas sensors,Sens. Actuators B
88 (2003) 138–148.
[24] Bj‥orn Timmer, and Wouter Olthuis, “ Albert van den Berg, Ammonia sensors
and their applications—a review” Sensors and Actuators B 107 (2005) 666–677.
[25] P. Warneck, Chemistry of the Natural Atmosphere, Academic Press Inc., 1998.
[26] N.A. Campbell, and J.B. Reece, Biology, Pearson Education Inc., 2002.
[27] S.V. Krupa, Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a
review, Environ. Pollut. 124 (2003) 179–221.
38
[28] D.A. Oudendag, and H.H. Luesink, The manure model: manure, minerals (N, P
and K), ammonia emission, heavy metals and use of fertiliser in Dutch
agriculture, Environ. Pollut. 102 (1998) 241–246.
[29] J.W. Erisman, R. Otjes, A. Hensen, P. Jongejan, P.v.d. Bulk, A. Khlystov, H.
M‥ols, S. Slanina, Instrument development and Application in studies and
monitoring of ambient ammonia, Atmos. Environ. 35 (2001) 1913–1922.
[30] G.H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K.
Johnson, and R. Kincaid, Measurement of atmospheric ammonia at a dairy using
differential optical absorption spec troscopy in the mid-ultraviolet, Atmos.
Environ. 36 (2002) 1799–1810.
[31] T.D. Durbin, R.D. Wilson, J.M. Norbeck, J.W. Miller, T. Huai, S.H. Rhee,
Estimates of the emission rates of ammonia from light-duty vehicles using
standard chassis dynamometer test cycles, Atmos. Environ. 36 (2002)
1475–1482.
[32] R. Moos, R. M‥uller, C. Plog, A. Knezevic, H. Leye, E. Irion, T. Braun, K.-J.
Marquardt, K. Binder, Selective ammonia exhaust gas sensor for automotive
applications, Sens. Actuators B 83 (2002) 181–189.
[33] S.G. Buckley, C.J. Damm, W.M. Vitovec, L.A. Sgro, R.F. Sawyer, C.P.
Koshland, D. Lucas, Ammonia detection and monitoring with
photofragmentation fluorescence, Appl. Opt. 37 (No. 36) (1998).
[34] A.T. Bulgan, Use of low-temperature energy sources in aquaammonia absorption
refrigeration systems, Energy Conserv. Manage. 38 (14) (1997) 1431–1438.
[35] P. Colonna, and S. Gabrielli, Industrial trigeneration using ammoniawater
absorption refrigeration systems (AAR), Appl. Thermal Eng. 23 (2003) 381–396.
[36] L.G. Close, F.I. Catlin, A.M. Cohn, Acute and chronic effects of ammonia burns
on the respiratory tract, Arch. Otolaryngol. 106 (3) (1980) 151–158.
[37] S. Chang, J.R. Stetter, Electrochemical NO2 gas sensors: model and mechanism
for the electrochemical reduction of NO2, Electroanalysis 2 (1990) 359–365.
[38] N. Yamazoe, and N. Miura, Environment gas sensing, Sens. Actuators B 20
(1994) 95–102.
[39] T. Wagner, T. Waitz, J. Roggenbuck, M. Froba, C.D. Kohl, and M. Tiemann,
Ordered mesoporous ZnO for gas sensing, Thin Solid Films 515 (2007)
8360–8363.
[40] H.M. Lin, S.-J. Tzeng, P.-J. Hsiau, and W.-Li Tsai, Electrode effects on gas
sensing properties of nanocrystalline zinc oxide, Nanostruct. Mater. 10 (3) (1998)
465–477.
[41] J.M. Pedrosa, and C.M. Dooling, T.H. Richardson, R.K. Hyde, C.A. Hunter,M.T.
39
Martin, L. Camacho, Characterization of fast optical response to NO2 of
porphyrin LB films, J. Mater. Chem. 9 (2002) 2659–2664.
[42] C. Baratto, G. Faglia, E. Comini, G. Sberveglieri, A. Taroni, V. La Ferrara, L.
Quercia, and G. Di Francia, A novel porous silicon sensor for detection of
sub-ppm NO2 concentrations, Sens. Actuators B 77 (2001) 62–66.
[43] C. M. Ghimbeu, J. Schoonman, M. Lumbreras, and M. Siadat, Electrostatic spray
deposited zinc oxide films for gas sensor applications, Appl. Surf. Sci. 253 (2007)
7483-7489.
[44] H.-J. Lim, D. Y. Lee, and Y.J. Oh, Gas sensing properties of ZnO thin films
prepared by microcontact printing, Sens. Actuators, A, Phys 125 (2006) 405-410.
[45] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu,
“Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky
diode,” Sens. Actuators B, vol. 99, pp. 425-430, 2004.
[46] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang,
Chun-Yuan Chen, and W. C. Liu, “Hydrogen sensing characteristics of Pd- and
Pt-Al0.3Ga0.7As metal–semiconductor (MS) Schottky diodes,” Semicond. Sci.
Technol., vol. 19, pp. 778-782, 2004.
[47] W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs
Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, no. 12, pp.
8175-8181, 1994.
[48] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Different catalytic metals
(Pt, Pd, and Ir) for GaAs Schottky barrier sensors,” Sens. Actuators B, vol. 7, pp.
614-618, 1992.
[49] Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C.
Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of
Pd/lGaAs-based Schottky diodes”, IEEE Trans. Electron Devices, vol. 50,
p.2532-2539, 2003.
[50] K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu,
“Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen-sensing Schottky
diode,” Sens. Actuators B. vol. 94, pp. 145-151, 2003.
[51] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A Hydrogen
sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,”
Semicond. Sci. Technol., vol. 18, pp. 615-619, 2003.
[52] D. E. Aspnes and A. Heller, “Barrier height and leakage reduction in n-GaAs
40
-platinum group metal Schottky barriers upon exposure to hydrogen,” J. Vac. Sci.
Technol. B, vol. 1, no. 3, pp. 602-607, 1983.
[53] W. C. Liu, H. J. Pan, H. I Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu,
“Hydrogen-sensitive characteristics of a novel Pd/InP
metal-oxide-semiconductor (MOS) Schottky diode hydrogen sensor,” IEEE
Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001.
[54] H. I. Chen and Y. I. Chou, “ A comparative study on hydrogen sensing
performances between electroless plated and thermal evaporated Pd/InP Schottky
diodes,” Semicond. Sci. Technol., vol. 18, pp. 104-110, 2003.
[55] S. Okuyama, K. Umemoto, K. Okauyama, S. Ohshima, and K. Matsushita, ”
Pd/Ni-Al2O3-Al tunnel diode as high-concentration-hydrogen gas sensor,” J.
Appl. Phys., vol. 36, pp. 1228-1232, 1997.
[56] S. Okuyama, H. Usami, K. Okauyama, H. Yamada, and K. Matsushita, ”
Improved response time of Pd/Ni-Al2O3-Al tunnel diode hydrogen gas sensor,” J.
Appl. Phys., vol. 36, pp. 6905-6908, 1997.D
[57] K. Mutamba, M. Flath, A. Sigurdardottir, A. Vogt, and H. L. Hartnagel, ” A
GaAs pressure sensor with frequency output based on resonant tunneling
diodes,” IEEE Trans. vol. 48, pp. 1333-1337, 1999.
[58] C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A
new Pd/oxide/Al0.3Ga0.7As MOS hydrogen sensor,” IEEE Electron Device Lett.,
vol. 24, pp. 390-392, 2003.
[59] L. Poteat and B. Lalevic, “Pd-MOS hydrogen and hydrocarbon sensor device”
IEEE Electron Device Lett., vol. 2, pp. 32-34, 1981.
[60] O. Casals, B. Barcones, C. Serre, J. R. Morante, P. Godignon, J. Montserrat, and
J. Mill′an, “Characterisation and stabilisation of Pt/TaSix/SiO2/SiC gas sensor, ”
Sens. Actuators B, vol. 109, pp. 119-127, 2005.
[61] S. Pitcher, J. A. Thiele, H. Ren, and J. F. Vetelino, ”Current/voltage
characteristics of a semiconductor metal oxide gas sensor, ”Sens. Actuators B,
vol. 93, pp. 454-462, 2003.
[62] P. Salomonsson, E. Jobson, B. Häggendal, J. Nytomt, C. Carlsson, M. Glavmo,
and A. Baranzahi, “Response of metal-oxide-silicon carbide sensors to simulated
and real exhaust gases,” Sens. Actuators B, vol. 43, pp. 52-59, 1997.
[63] I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and
41
applications,” Sens. Actuators, vol. 1, pp. 403-426, 1981.
[64] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, and W. C. Liu, “Hydrogen sensing
properties of a Pt-oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor
(HEMT),” Appl. Phys. Lett., vol. 86, 2005.
[65] S. Batra, K. Park, S. Banerjee, D. Kwong, A. Tasch, M. Rodder, and R.
Sundaresan, “Rapid thermal hydrogen passivation of polysilicon MOSFET’s,”
IEEE Electron Device Lett., vol. 11, pp. 194-196, 1990.
[66] S. Batra, K. Park, S. Banerjee, D. Kwong, A. Tasch, M. Rodder, and R.
Sundaresan, “Rapid thermal hydrogen passivation of polysilicon MOSFET’s,”
IEEE Electron Device Lett., vol. 11, pp. 194-196, 1990.
[67] R. E. Stahlbush, “Interface defect formation in MOSFETs by atomic hydrogen
exposure,” IEEE Trans. Nucl. Sci., vol. 41, pp. 1844-1853, 1994.
[68] T. Wang, C. Huang, P. C. Chou, S. S. S. Chung, and T. E. Chang, “Effect of hot
carrier induced interface state generation in submicron LDD MOSFET’s,” IEEE
Trans. Electron Devices, vol. 41, pp. 1618-1622, 1994.
[69] P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of Pd/Si MIS
Schottky barrier diode hydrogen detector, ”(1981). IEEE Trans. Electron Devices,
vol. 28, pp. 1003-1009, 1981.
[70] I. Lundström and L. G. Petersson, “Chemical sensors with catalytic metal gates,”
J. Vac. Sci. Technol. A, vol. 14, pp.1539-1545, 1996.
[71] F. Winquist, A. Spetz, M. Armgarth, C. Nylander, and I. Lundstrom, “ Modified
palladium metal-oxide-semiconductor structures with increased ammonia gas
sensitivity” Appl. Phys. Lett. 43(9), 1 November 1983.
[72] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “The ammonia sensitivity
of Pt/GaAs Schottky barrier diodes” J. Appl. Phys. 70 (6), 15 September 1991.
[73] B.L. Zhu, C.S. Xie,W.Y.Wang, K.J. Huang, and J.H. Hu, Improvement in gas
sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding
TiO2, Mater. Lett. 58 (2004) 624–629.
[74] U. Hoefer, J. Frank, and M. Fleischer, High temperature Ga2O3-gas sensors and
SnO2- gas sensors: a comparison, Sens. Actuators B 78 (2001) 6–11.
[75] K.D. Schierbaum, U. Weimar, W. Gopel, and R. Kowalkowski, Conductance
work function and catalytic activity of SnO2-based gas sensors, Sens. Actautors
B 3 (1991) 205–214.
42
[76] O.V. Safonova, G. Delabouglise, B. Chenevier, A.M. Gaskov, M. Labeau, CO
and NO2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd,
Ru and Rh, Mater. Sci. Eng. C 21 (2002) 105–111.
[77] M. Ivanovskaga, A. Gurlo, and P. Bogdanov, Mechanism of O3 and NO2
detection and selectivity of In2O3 sensors, Sens. Actuators B 77 (2001) 264–267.
[78] H. Hasegawa, M. Akazawa, Mechanism and control of current transport in GaN
and AlGaN Schottky barriers for chemical sensor applications, Appl. Surf. Sci.
(2007),
[79] L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, “A new
hydrogen sensor based on a Pt/GaAs Schottky diode,” Sens. Actuators B, vol. 4,
pp. 515-518, 1991.
[80] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative
hydrogen-sensing study of Pd/GaAs and Pd/InP metal-oxide-semiconductor
Schottky diodes,” Jpn. J. Appl. Phys., vol. 40, pp. 6254-6259, 2001.
[81] J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diode
hydrogen sensor performance at high temperatures with different catalytic
metals,” Solid-State Electron., vol. 49, pp. 1330-1334, 2005.
[82] H. Norde, “A modified forward I-V plot for Schottky diodes with high series
resistance,” J. Appl. Phys., vol. 50, pp. 5052-5053, 1979.
[83] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1981,
Ch. 2.
[84] H. Kim, M. Schuette, H. Jung, J. Song, J. Lee, W. Lu, and C. M. James,
Passivation effects in Ni/AlGaN/GaN Schottky diodes by aealing Appl. Phys.
Lett. 89 (2006) 053516
[85] W. Gao, P. R. Berger, R. G. Hunsperger, G. Zydzik, W. W. Rhodes, H. M.
O’Bryan, D .Sivco, and A. Y. Cho, “Transparent and opaque Schottky contacts
on undoped In0.52Al0.48As grown by molecular beam epitaxy,” Appl. Phys. Lett.,
vol. 66, pp. 3471-3473, 1995.
[86] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang, C. Y.
Chen, and W. C. Liu, “Hydrogen sensing characteristics of Pd- and
Pt-Al0.3Ga0.7As 77 metal–semiconductor (MS) Schottky diodes,” Semicond. Sci.
Technol., vol. 19, pp. 778-782, 2004.
[87] M. Löfdahl, M. Eriksson, M. Johansson, and I. Lundström, “Difference in
hydrogen sensitivity between Pt and Pd field-effect devices,” J. Appl. Phys., vol.
91, pp. 4275-4280, 2002.
43
[88] H. Meixner, J. Gerblinger, U. Lampe, M. Fleischer, Thin-film gas sensors based
on semiconducting metal oxides, Sens. Actuators B 23 (1995) 119–125.
[89] K. Satake,A. Katayama, H. Ohkoshi, T.Nakahara, T. Takeuchi, TitaniaNOx
sensors for exhaust monitoring, Sens. Actuators B 20 (1994) 111–117.
[90] A. Gurlo, N. Barsan, M. Ivanovskaya, U. Weimar, W. G‥ opel, In2O3 and
MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3, Sens.
Actuators B 47 (1998) 92–99.
[91] M. Penza, C. Martucci, and G. Cassano, NOx gas sensing characteristics of WO3
thin films activated by noble metals (Pd, Pt, Au) layers, Sens. Actuators B 50
(1998) 52–59.
[92] J.J. Miasik, A. Hooper, and B.C. Tofield, Conducting polymer gas sensors, J.
Chem. Soc., Faraday Trans. 1 82_1986.1117.
[93] H. Xia, Y. Wang, F. Kong, S. Wang, B. Zhu, X. Guo, J. Zhang, Y. Wang,and S.
Wu, Au-doped WO3-based sensor for NO2 detection at low operating
temperature, Sens. Actuators B 134 (2008) 133–139.
[94] M.C. Lonergan, E.J. Severin, B.J. Doleman, S.A. Beaber, R.H. Grubbs, and N.S.
Lewis, Array-Based Vapor Sensing Using Chemically Sensitive, Carbon
Black-Polymer Resistors, Chem. Mater. 1996, 8, 2298-2312
[95] T.A. Dickinson, J. White, J.S. Kauer, D.R. Walt, A chemical-detecting system
based on cross-reactive optical sensor array, Nature 382 _1996.697–700.
[96] J.W. Gardner, P.N. Bartlett, Electronic Noses — Principles and Applications,
Oxford Univ. Press, New York, 1999.
[97] D.J. Strike, M.G.H. Meijerink, M. Koudelka-Hep, Electronic noses a
mini-review, Fresenius’ J. Anal. Chem. 364_1999.499–505, and references
therein.
[98] A. Dodabalapur, J. Baumbach, K. Baldwin, H.E. Katz, Hybrid organicrinorganic
complementary circuits, Appl. Phys. Lett. 68 _1996.2264.
[99]A.R. Brown, A. Pomp, C.M. Hart, D.M. de Leeuw, Logic gates made from
polymer transistors and their use in ring oscillators, Science 270_1995.972–974.
[100] L. Torsi , A. Dodabalapur , L. Sabbatini ,and P.G. Zambonin, Multi-parameter
gas sensors based on organic thin-film-transistors, Sens. Actuators B
672000.312–316