簡易檢索 / 詳目顯示

研究生: 張仲甫
Chang, Chung-Fu
論文名稱: 積體式三-氮族化合物半導體系列氣體感測器之研製
Fabrication of Integrated Ⅲ-Nitride Compound Semiconductor Based Gas Sensors
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 43
中文關鍵詞: 氮化鋁鎵積體式氣體感測器蕭特基接觸式
外文關鍵詞: Gas Sensors, Integrated, AlGaN, Schottky
相關次數: 點閱:52下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數十年來,各種不同類型的氣體感測器已被廣泛的研究與開發。而自
    蕭特基接觸式與電阻式為基礎的氣體感測器被提出之後,隨著半導體製程的進步,體積小、靈敏度高,可大量生產的半導體式氣體感測器已逐漸成為研究主流。
    本論文中所提出的元件是以不同的觸媒材料,像鈀、鉑和氧化鋅製作
    成積體式的氣體感測器,分別去量測不同的氣體,如氫氣、氨氣以及二氧化氮,並去研究其感測與響應特性。
    首先,探討鈀/氮化鋁鎵/氮化鎵蕭特基二極體式感測器在不同溫度下的氫氣感測特性。此元件展現良好的感測性能,包含高相對靈敏度比、大電流變化量、寬廣的反向操作電壓區間及快速響應時間。
    其次,探討鉑/氮化鋁鎵/氮化鎵蕭特基二極體式感測器在不同溫度下的氨氣感測特性,鉑金屬除了在氫氣上擁有感測特性外,還具備有偵測氨氣的能力。特別是在高溫時,此元件更擁有快速的響應時間。
    第三,研究氧化鋅/氮化鋁鎵/氮化鎵電阻式感測器在不同溫度下的二氧化氮感測特性,因為二氧化氮是氧化性的氣體,會使得感測器的阻值上升。
    對此我們製做了阻值較小的電阻式感測器,以便提升其靈敏度,而大的電流變化量也使得感測器較不容易受到雜訊的影響。
    最後,由實驗結果我們可以得知,當感測氣體(氫氣、氨氣與二氧化氮)通入時,利用觸媒金屬對氣體選擇性的不同,可以得知通入的氣體為何者,而在未來此感測元件對於智慧型感測器及微機電系統應用具有良好之發展潛力。

    Over the past decades, different types of gas sensors were developed. With the quick development of the fabrication technologies, semiconductor based gas sensors with small size and high sensitivity have become the mainstream of the research process.
    The studied integrated sensors consisted of different catalytic metals such as Pd, Pt and ZnO. The studied devices are capable of monitoring different gases such as hydrogen, ammonia, and nitrogen dioxide. The AlGaN/GaN layer was used because of its advantages including large band gap (4.3eV), wide operation temperature region, good chemical stability, and high density of two-dimensional electron gas.
    First, the hydrogen-detection characteristics of a Pd/AlGaN/GaN Schottky diode-type sensor were studied and demonstrated at different temperatures. This device exhibited good sensing performance including high relative sensitivity ratio, large current variation, widespread reverse voltage regime, and fast response time.
    Second, the ammonia-detection characteristics of a Pt/AlGaN/GaN Schottky diode-type sensor were studied and demonstrated. Pt catalytic metal dissociates not only hydrogen molecules but also ammonia molecules. At high temperatures, the device exhibited fast transient response time.
    Finally, the nitrogen dioxide-detection characteristics of a ZnO/AlGaN/GaN resistor-type sensor were studied and demonstrated. Based on the sensing mechanism of metal-oxide
    material, the oxidizing property of nitrogen dioxide leads to the decrease of ZnO conductance.
    In this research, the resistor-type sensor was fabricated with lower resistance to increase the sensitivity. Besides, sensors with large current variation exhibit larger margins to noise interference. Consequently, the integrated sensors show the promise for smart gas sensors and micro-electro-mechanical system (MEMS) application.

    CONTENTS Abstract Figure Captions Chapter 1 Introduction 1.1. Brief Introduction to Gas Sensors.……….………………….................................1 1.2. Gas Detecting Mechanism…....................................................................…..........3 1.2.1 Hydrogen Detection Mechanism…………..…...………..………………….3 1.2.2 Ammonia Detection Mechanism…………….....……..………………….....4 1.2.3 Nitrogen Dioxide Detection Mechanism……………..………..…………....4 1.3. Gas Detection Apparatus and Measurement................................….......................5 1.4. Summary….............................................................................................................6 Chapter 2 Experimental Details 2.1. Device Preparation and Fabrication...………...….……………………………….8 2.1.1 Device Structure………………….…………………………………………8 2.1.2 Dry Etching Conditions………………………………………...…………...8 2.1.3 Device fabrication………………………………………………………………8 2.2. Gas Sensing Measurement………………………………………………………..9 2.2.1 System Setup………………………………………...……………………...9 2.2.2 Gas Sensing Experiments…………………...………………………………9 Chapter 3 Gas sensing Characteristics of the AlGaN-based Sensors 3.1. Investigation of Hydrogen-sensing Characteristics of a Pd/AlGaN/GaN Schottky Diode……………………………………………………………………………..12 3.1.1 Introduction……………………………...…………………………………12 3.1.2 Device Fabrication…………………………….…..……………………….13 3.1.3 Experimental Results and Discussion……………..….……………………14 3.1.3.1 Electrical Property Analysis…………….….……………….……...14 3.1.3.2 Dynamic Responses Analysis……………..………….…………….17 3.1.4 Summary…………………….………………….….………………………18 3.2. Investigation of Ammonia-sensing Characteristics of a Pt/AlGaN/GaN Schottky Diode……………………………………………………………………………19 3.2.1 Introduction…...………………………………...………………………….19 3.2.2 Device Fabrication……………………………………………..…………..20 3.2.3 Experimental Results and Discussion………………………………...……21 3.2.3.1 Electrical Property Analysis………………………………………21 3.2.3.2 Dynamic Responses Analysis……………………………………..23 3.2.4 Summary…………………………………………….……………………..24 3.3. Investigation of Nitrogen Dioxide Sensing Characteristics of a ZnO/AlGaN/GaN Resistor-type Sensor……………………………………………………………24 3.3.1 Introduction………………………………………………………………..24 3.3.2 Device Fabrication…………………………………………………………25 3.3.3 Experimental Results and Discussion………………………………….…..25 3.3.3.1 Electrical Property Analysis………………………………………..25 3.3.3.2 Dynamic Responses Analysis………………………………………27 3.3.4 Summary…………………………………………………………………...27 Chapter 4 Gas sensing characteristics of Integrated Ⅲ-Nitride Compound Semiconductor Based Gas Sensors 4.1. Introduction…………………………………………………………………….29 4.2. Device Fabrication…..............................................................................................30 4.3. Experimental Results and Discussion………………..…...........…...........……….31 4.4 Summary…….............................................................................…........................32 Chapter 5 Conclusion and Prospects 5.1. Conclusion.........................................................................................................….34 5.2. Prospects…….........................................................................................................35 References Figures Publication List

    Reference
    [1] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen
    sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, pp. 10-18,
    2002.
    [2] M. Duffy, W. G. Hurley, J. Kubik, S. O’Reilly,and P. Ripka, “Current sensor in
    pcb technology,” Sensors, 2002 Proceedings of IEEE, vol. 18, pp. 779-784,
    2002.
    [3] A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A. L. Spetz, and P. Tobias,
    “Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE
    Electron Device Lett., vol. 18, pp. 287-289, 1997.
    [4] K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,”
    Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International, vol.
    2, pp. 431-440, 1997.
    [5] P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, pp. 223-237,
    1997.
    [6] N. Yamazoe and N. Miuta, “Development of gas sensors for environmental
    protection,” IEEE Tran. Compo. Packag. Manuf. Technol. Part A vol. 18, pp.
    252-256, 1995.
    [7] A. Mandelis and C. Christofides, “Physics, chemistry and technology of solid
    state gas sensor devices, ,” ch 3, New York: John Wily & Sons (1993).
    [8] S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultra sensitive silicon
    pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, pp.
    825-835, 1992.
    [9] W. Gopel, J. Hesse, and J. N. Zemel, “Sensors,” vol. 1, ch 10, Weinheim: VCH
    press (1991).
    [10] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas
    detection,” J. Appl. Phys., vol. 68, pp. 1-30, 1990.
    [11] W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas
    sensors, ” IEEE Trans. Electron Devices, vol. 35, pp. 793-799, 1988.
    [12] S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp.
    329-341, 1982.
    [13] W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas
    37
    sensors,” IEEE Trans. Electron Devices, vol. 35, pp. 793-799, 1988.
    [14] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas
    detection,” J. Appl. Phys., vol. 68, pp. R1-R30, 1990.
    [15] M. Duffy, W. G. Hurley, J. Kubik, S. O’Reilly, and P. Ripka, “Current sensor in
    pcb technology,” Sensors, 2002 Proceedings of IEEE, vol.18, pp. 779-784,
    2002.
    [16] S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp.
    329-341, 1982.
    [17] W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas
    sensors, ” IEEE Trans. Electron Devices, vol. 35, pp. 793 –799, 1988.
    [18] S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultra sensitive silicon
    pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, pp.
    825-835, 1992.
    [19] K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,”
    Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International,
    vol.2, pp. 431 –440L, 1997.
    [20] A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A. L. Spetz, and P. Tobias,
    “Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE
    Electron Device Lett., vol, 18, pp. 287-289, 1997.
    [21] C. C. Chang, and Y. E. Chen, “Fabrication of high sensitivity ZnO thin film
    ultrasonic devices by electrochemical etch techniques,” IEEE Trans. Ultrason.
    Ferroelectr. Freq. Control, vol. 44, pp. 624-628, 1997.
    [22] D. Kohl, Function and application of gas sensors, topical review,J. Phys. D34
    (2001) R125–R149.
    [23] A. Dubbe, Fundamentals of solid state ionic micro gas sensors,Sens. Actuators B
    88 (2003) 138–148.
    [24] Bj‥orn Timmer, and Wouter Olthuis, “ Albert van den Berg, Ammonia sensors
    and their applications—a review” Sensors and Actuators B 107 (2005) 666–677.
    [25] P. Warneck, Chemistry of the Natural Atmosphere, Academic Press Inc., 1998.
    [26] N.A. Campbell, and J.B. Reece, Biology, Pearson Education Inc., 2002.
    [27] S.V. Krupa, Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a
    review, Environ. Pollut. 124 (2003) 179–221.
    38
    [28] D.A. Oudendag, and H.H. Luesink, The manure model: manure, minerals (N, P
    and K), ammonia emission, heavy metals and use of fertiliser in Dutch
    agriculture, Environ. Pollut. 102 (1998) 241–246.
    [29] J.W. Erisman, R. Otjes, A. Hensen, P. Jongejan, P.v.d. Bulk, A. Khlystov, H.
    M‥ols, S. Slanina, Instrument development and Application in studies and
    monitoring of ambient ammonia, Atmos. Environ. 35 (2001) 1913–1922.
    [30] G.H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K.
    Johnson, and R. Kincaid, Measurement of atmospheric ammonia at a dairy using
    differential optical absorption spec troscopy in the mid-ultraviolet, Atmos.
    Environ. 36 (2002) 1799–1810.
    [31] T.D. Durbin, R.D. Wilson, J.M. Norbeck, J.W. Miller, T. Huai, S.H. Rhee,
    Estimates of the emission rates of ammonia from light-duty vehicles using
    standard chassis dynamometer test cycles, Atmos. Environ. 36 (2002)
    1475–1482.
    [32] R. Moos, R. M‥uller, C. Plog, A. Knezevic, H. Leye, E. Irion, T. Braun, K.-J.
    Marquardt, K. Binder, Selective ammonia exhaust gas sensor for automotive
    applications, Sens. Actuators B 83 (2002) 181–189.
    [33] S.G. Buckley, C.J. Damm, W.M. Vitovec, L.A. Sgro, R.F. Sawyer, C.P.
    Koshland, D. Lucas, Ammonia detection and monitoring with
    photofragmentation fluorescence, Appl. Opt. 37 (No. 36) (1998).
    [34] A.T. Bulgan, Use of low-temperature energy sources in aquaammonia absorption
    refrigeration systems, Energy Conserv. Manage. 38 (14) (1997) 1431–1438.
    [35] P. Colonna, and S. Gabrielli, Industrial trigeneration using ammoniawater
    absorption refrigeration systems (AAR), Appl. Thermal Eng. 23 (2003) 381–396.
    [36] L.G. Close, F.I. Catlin, A.M. Cohn, Acute and chronic effects of ammonia burns
    on the respiratory tract, Arch. Otolaryngol. 106 (3) (1980) 151–158.
    [37] S. Chang, J.R. Stetter, Electrochemical NO2 gas sensors: model and mechanism
    for the electrochemical reduction of NO2, Electroanalysis 2 (1990) 359–365.
    [38] N. Yamazoe, and N. Miura, Environment gas sensing, Sens. Actuators B 20
    (1994) 95–102.
    [39] T. Wagner, T. Waitz, J. Roggenbuck, M. Froba, C.D. Kohl, and M. Tiemann,
    Ordered mesoporous ZnO for gas sensing, Thin Solid Films 515 (2007)
    8360–8363.
    [40] H.M. Lin, S.-J. Tzeng, P.-J. Hsiau, and W.-Li Tsai, Electrode effects on gas
    sensing properties of nanocrystalline zinc oxide, Nanostruct. Mater. 10 (3) (1998)
    465–477.
    [41] J.M. Pedrosa, and C.M. Dooling, T.H. Richardson, R.K. Hyde, C.A. Hunter,M.T.
    39
    Martin, L. Camacho, Characterization of fast optical response to NO2 of
    porphyrin LB films, J. Mater. Chem. 9 (2002) 2659–2664.
    [42] C. Baratto, G. Faglia, E. Comini, G. Sberveglieri, A. Taroni, V. La Ferrara, L.
    Quercia, and G. Di Francia, A novel porous silicon sensor for detection of
    sub-ppm NO2 concentrations, Sens. Actuators B 77 (2001) 62–66.
    [43] C. M. Ghimbeu, J. Schoonman, M. Lumbreras, and M. Siadat, Electrostatic spray
    deposited zinc oxide films for gas sensor applications, Appl. Surf. Sci. 253 (2007)
    7483-7489.
    [44] H.-J. Lim, D. Y. Lee, and Y.J. Oh, Gas sensing properties of ZnO thin films
    prepared by microcontact printing, Sens. Actuators, A, Phys 125 (2006) 405-410.
    [45] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu,
    “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky
    diode,” Sens. Actuators B, vol. 99, pp. 425-430, 2004.
    [46] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang,
    Chun-Yuan Chen, and W. C. Liu, “Hydrogen sensing characteristics of Pd- and
    Pt-Al0.3Ga0.7As metal–semiconductor (MS) Schottky diodes,” Semicond. Sci.
    Technol., vol. 19, pp. 778-782, 2004.
    [47] W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs
    Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, no. 12, pp.
    8175-8181, 1994.
    [48] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Different catalytic metals
    (Pt, Pd, and Ir) for GaAs Schottky barrier sensors,” Sens. Actuators B, vol. 7, pp.
    614-618, 1992.
    [49] Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C.
    Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of
    Pd/lGaAs-based Schottky diodes”, IEEE Trans. Electron Devices, vol. 50,
    p.2532-2539, 2003.
    [50] K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu,
    “Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen-sensing Schottky
    diode,” Sens. Actuators B. vol. 94, pp. 145-151, 2003.
    [51] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A Hydrogen
    sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,”
    Semicond. Sci. Technol., vol. 18, pp. 615-619, 2003.
    [52] D. E. Aspnes and A. Heller, “Barrier height and leakage reduction in n-GaAs
    40
    -platinum group metal Schottky barriers upon exposure to hydrogen,” J. Vac. Sci.
    Technol. B, vol. 1, no. 3, pp. 602-607, 1983.
    [53] W. C. Liu, H. J. Pan, H. I Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu,
    “Hydrogen-sensitive characteristics of a novel Pd/InP
    metal-oxide-semiconductor (MOS) Schottky diode hydrogen sensor,” IEEE
    Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001.
    [54] H. I. Chen and Y. I. Chou, “ A comparative study on hydrogen sensing
    performances between electroless plated and thermal evaporated Pd/InP Schottky
    diodes,” Semicond. Sci. Technol., vol. 18, pp. 104-110, 2003.
    [55] S. Okuyama, K. Umemoto, K. Okauyama, S. Ohshima, and K. Matsushita, ”
    Pd/Ni-Al2O3-Al tunnel diode as high-concentration-hydrogen gas sensor,” J.
    Appl. Phys., vol. 36, pp. 1228-1232, 1997.
    [56] S. Okuyama, H. Usami, K. Okauyama, H. Yamada, and K. Matsushita, ”
    Improved response time of Pd/Ni-Al2O3-Al tunnel diode hydrogen gas sensor,” J.
    Appl. Phys., vol. 36, pp. 6905-6908, 1997.D
    [57] K. Mutamba, M. Flath, A. Sigurdardottir, A. Vogt, and H. L. Hartnagel, ” A
    GaAs pressure sensor with frequency output based on resonant tunneling
    diodes,” IEEE Trans. vol. 48, pp. 1333-1337, 1999.
    [58] C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A
    new Pd/oxide/Al0.3Ga0.7As MOS hydrogen sensor,” IEEE Electron Device Lett.,
    vol. 24, pp. 390-392, 2003.
    [59] L. Poteat and B. Lalevic, “Pd-MOS hydrogen and hydrocarbon sensor device”
    IEEE Electron Device Lett., vol. 2, pp. 32-34, 1981.
    [60] O. Casals, B. Barcones, C. Serre, J. R. Morante, P. Godignon, J. Montserrat, and
    J. Mill′an, “Characterisation and stabilisation of Pt/TaSix/SiO2/SiC gas sensor, ”
    Sens. Actuators B, vol. 109, pp. 119-127, 2005.
    [61] S. Pitcher, J. A. Thiele, H. Ren, and J. F. Vetelino, ”Current/voltage
    characteristics of a semiconductor metal oxide gas sensor, ”Sens. Actuators B,
    vol. 93, pp. 454-462, 2003.
    [62] P. Salomonsson, E. Jobson, B. Häggendal, J. Nytomt, C. Carlsson, M. Glavmo,
    and A. Baranzahi, “Response of metal-oxide-silicon carbide sensors to simulated
    and real exhaust gases,” Sens. Actuators B, vol. 43, pp. 52-59, 1997.
    [63] I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and
    41
    applications,” Sens. Actuators, vol. 1, pp. 403-426, 1981.
    [64] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, and W. C. Liu, “Hydrogen sensing
    properties of a Pt-oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor
    (HEMT),” Appl. Phys. Lett., vol. 86, 2005.
    [65] S. Batra, K. Park, S. Banerjee, D. Kwong, A. Tasch, M. Rodder, and R.
    Sundaresan, “Rapid thermal hydrogen passivation of polysilicon MOSFET’s,”
    IEEE Electron Device Lett., vol. 11, pp. 194-196, 1990.
    [66] S. Batra, K. Park, S. Banerjee, D. Kwong, A. Tasch, M. Rodder, and R.
    Sundaresan, “Rapid thermal hydrogen passivation of polysilicon MOSFET’s,”
    IEEE Electron Device Lett., vol. 11, pp. 194-196, 1990.
    [67] R. E. Stahlbush, “Interface defect formation in MOSFETs by atomic hydrogen
    exposure,” IEEE Trans. Nucl. Sci., vol. 41, pp. 1844-1853, 1994.
    [68] T. Wang, C. Huang, P. C. Chou, S. S. S. Chung, and T. E. Chang, “Effect of hot
    carrier induced interface state generation in submicron LDD MOSFET’s,” IEEE
    Trans. Electron Devices, vol. 41, pp. 1618-1622, 1994.
    [69] P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of Pd/Si MIS
    Schottky barrier diode hydrogen detector, ”(1981). IEEE Trans. Electron Devices,
    vol. 28, pp. 1003-1009, 1981.
    [70] I. Lundström and L. G. Petersson, “Chemical sensors with catalytic metal gates,”
    J. Vac. Sci. Technol. A, vol. 14, pp.1539-1545, 1996.
    [71] F. Winquist, A. Spetz, M. Armgarth, C. Nylander, and I. Lundstrom, “ Modified
    palladium metal-oxide-semiconductor structures with increased ammonia gas
    sensitivity” Appl. Phys. Lett. 43(9), 1 November 1983.
    [72] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “The ammonia sensitivity
    of Pt/GaAs Schottky barrier diodes” J. Appl. Phys. 70 (6), 15 September 1991.
    [73] B.L. Zhu, C.S. Xie,W.Y.Wang, K.J. Huang, and J.H. Hu, Improvement in gas
    sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding
    TiO2, Mater. Lett. 58 (2004) 624–629.
    [74] U. Hoefer, J. Frank, and M. Fleischer, High temperature Ga2O3-gas sensors and
    SnO2- gas sensors: a comparison, Sens. Actuators B 78 (2001) 6–11.
    [75] K.D. Schierbaum, U. Weimar, W. Gopel, and R. Kowalkowski, Conductance
    work function and catalytic activity of SnO2-based gas sensors, Sens. Actautors
    B 3 (1991) 205–214.
    42
    [76] O.V. Safonova, G. Delabouglise, B. Chenevier, A.M. Gaskov, M. Labeau, CO
    and NO2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd,
    Ru and Rh, Mater. Sci. Eng. C 21 (2002) 105–111.
    [77] M. Ivanovskaga, A. Gurlo, and P. Bogdanov, Mechanism of O3 and NO2
    detection and selectivity of In2O3 sensors, Sens. Actuators B 77 (2001) 264–267.
    [78] H. Hasegawa, M. Akazawa, Mechanism and control of current transport in GaN
    and AlGaN Schottky barriers for chemical sensor applications, Appl. Surf. Sci.
    (2007),
    [79] L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, “A new
    hydrogen sensor based on a Pt/GaAs Schottky diode,” Sens. Actuators B, vol. 4,
    pp. 515-518, 1991.
    [80] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative
    hydrogen-sensing study of Pd/GaAs and Pd/InP metal-oxide-semiconductor
    Schottky diodes,” Jpn. J. Appl. Phys., vol. 40, pp. 6254-6259, 2001.
    [81] J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diode
    hydrogen sensor performance at high temperatures with different catalytic
    metals,” Solid-State Electron., vol. 49, pp. 1330-1334, 2005.
    [82] H. Norde, “A modified forward I-V plot for Schottky diodes with high series
    resistance,” J. Appl. Phys., vol. 50, pp. 5052-5053, 1979.
    [83] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1981,
    Ch. 2.
    [84] H. Kim, M. Schuette, H. Jung, J. Song, J. Lee, W. Lu, and C. M. James,
    Passivation effects in Ni/AlGaN/GaN Schottky diodes by aealing Appl. Phys.
    Lett. 89 (2006) 053516
    [85] W. Gao, P. R. Berger, R. G. Hunsperger, G. Zydzik, W. W. Rhodes, H. M.
    O’Bryan, D .Sivco, and A. Y. Cho, “Transparent and opaque Schottky contacts
    on undoped In0.52Al0.48As grown by molecular beam epitaxy,” Appl. Phys. Lett.,
    vol. 66, pp. 3471-3473, 1995.
    [86] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang, C. Y.
    Chen, and W. C. Liu, “Hydrogen sensing characteristics of Pd- and
    Pt-Al0.3Ga0.7As 77 metal–semiconductor (MS) Schottky diodes,” Semicond. Sci.
    Technol., vol. 19, pp. 778-782, 2004.
    [87] M. Löfdahl, M. Eriksson, M. Johansson, and I. Lundström, “Difference in
    hydrogen sensitivity between Pt and Pd field-effect devices,” J. Appl. Phys., vol.
    91, pp. 4275-4280, 2002.
    43
    [88] H. Meixner, J. Gerblinger, U. Lampe, M. Fleischer, Thin-film gas sensors based
    on semiconducting metal oxides, Sens. Actuators B 23 (1995) 119–125.
    [89] K. Satake,A. Katayama, H. Ohkoshi, T.Nakahara, T. Takeuchi, TitaniaNOx
    sensors for exhaust monitoring, Sens. Actuators B 20 (1994) 111–117.
    [90] A. Gurlo, N. Barsan, M. Ivanovskaya, U. Weimar, W. G‥ opel, In2O3 and
    MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3, Sens.
    Actuators B 47 (1998) 92–99.
    [91] M. Penza, C. Martucci, and G. Cassano, NOx gas sensing characteristics of WO3
    thin films activated by noble metals (Pd, Pt, Au) layers, Sens. Actuators B 50
    (1998) 52–59.
    [92] J.J. Miasik, A. Hooper, and B.C. Tofield, Conducting polymer gas sensors, J.
    Chem. Soc., Faraday Trans. 1 82_1986.1117.
    [93] H. Xia, Y. Wang, F. Kong, S. Wang, B. Zhu, X. Guo, J. Zhang, Y. Wang,and S.
    Wu, Au-doped WO3-based sensor for NO2 detection at low operating
    temperature, Sens. Actuators B 134 (2008) 133–139.
    [94] M.C. Lonergan, E.J. Severin, B.J. Doleman, S.A. Beaber, R.H. Grubbs, and N.S.
    Lewis, Array-Based Vapor Sensing Using Chemically Sensitive, Carbon
    Black-Polymer Resistors, Chem. Mater. 1996, 8, 2298-2312
    [95] T.A. Dickinson, J. White, J.S. Kauer, D.R. Walt, A chemical-detecting system
    based on cross-reactive optical sensor array, Nature 382 _1996.697–700.
    [96] J.W. Gardner, P.N. Bartlett, Electronic Noses — Principles and Applications,
    Oxford Univ. Press, New York, 1999.
    [97] D.J. Strike, M.G.H. Meijerink, M. Koudelka-Hep, Electronic noses a
    mini-review, Fresenius’ J. Anal. Chem. 364_1999.499–505, and references
    therein.
    [98] A. Dodabalapur, J. Baumbach, K. Baldwin, H.E. Katz, Hybrid organicrinorganic
    complementary circuits, Appl. Phys. Lett. 68 _1996.2264.
    [99]A.R. Brown, A. Pomp, C.M. Hart, D.M. de Leeuw, Logic gates made from
    polymer transistors and their use in ring oscillators, Science 270_1995.972–974.
    [100] L. Torsi , A. Dodabalapur , L. Sabbatini ,and P.G. Zambonin, Multi-parameter
    gas sensors based on organic thin-film-transistors, Sens. Actuators B
    672000.312–316

    下載圖示 校內:2012-07-27公開
    校外:2012-07-27公開
    QR CODE