簡易檢索 / 詳目顯示

研究生: 黃信瑋
Huang, Hsin-Wei
論文名稱: 定向能量沉積技術應用於不鏽鋼316L之多層掃描數值建模與製程參數影響及優化熱分析
Numerical Modeling on Multi-layer Scanning of Directed Energy Deposition Using Stainless Steel 316L and Thermal Analysis for the Effects and Optimization of Process Parameters
指導教授: 溫昌達
Wen, Chang-Da
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 124
中文關鍵詞: 定向能量沉積技術數值分析雷射功率雷射掃描速率冷卻速率
外文關鍵詞: Directed Energy Deposition, numerical analysis, laser power, scanning speed, cooling rate
相關次數: 點閱:79下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用數值模擬軟體ANSYS FLUENT 15.0建立三維暫態的多層掃描DED加工數值熱分析模型,以加工三層金屬薄層來探討多層DED之製程現象,並透過工研院的DED機台進行實驗驗證,證明模擬結果具有準確性。研究中探討雷射功率及雷射掃描速率對多層金屬薄層幾何尺寸及冷卻速率的影響性與趨勢變化,接續再從節省製程時間、節省能源消耗與降低冷卻速率此三項來衡量各種製程參數組合的優劣,並歸納出最佳化製程參數。為了優化多層金屬薄層的堆疊外型,本研究中也歸納出雷射功率的調降趨勢可提供予實驗者參考。最後依據所選用的最佳化製程參數,探討加工停滯時間、基板預熱和單、雙向加工掃動方式的影響性。
    研究結果顯示當以固定的製程參數來加工多層金屬薄層時,每層的堆疊高度會隨加工層數增加而增加,而冷卻速率則相反;當雷射功率1800 W、雷射掃描速率8 mm/s時最能節省製程時間及能源,且對產品的結構強度和金相最具助益;調降雷射功率來優化多層堆疊外形的結果中,第一、二層間的雷射功率與堆疊高度的差異最大,而第二、三層間的差異小,明顯呈現出趨緩的趨勢;加工停滯時間的長短對改善製程的影響有限;基板預熱能有效增加金屬薄層幾何尺寸,並可降低冷卻速率和溫度梯度,有利於柱狀晶生長與增強結構強度;最後以單向掃動方式來加工多層金屬薄層,較有利於維持成品外觀在堆疊高度上的一致性。

    In this research, a numerical model for multi-layer scanning of Directed Energy Deposition (DED) process for SS316L is constructed to study transient thermal phenomenon under primary process parameters. The geometrical sizes and cooling rate of multi-layer metal thin layers are investigated under various combination of laser power and scanning speed. It is discovered that the layer height will increase with layer number when maintaining the same process parameters. Moreover, judged from the view of time-saving, energy-saving and reducing cooling rate, the optimal combination of process parameters is determined. Furthermore, in order to obtain superior deposition appearance, the trends of reducing laser power for each layer are proposed.
    It is found that laser power of 1800 W and scanning speed of 8 mm/s are the optimal combination of process parameters, which is most beneficial for time saving, energy saving, promoting the growth of columnar grains and reducing cracking possibility. To further improve the manufacturing problems induced by thermal field, the effects of idle time, substrate preheating and scanning direction are studied. Results indicate that idle time has no obvious effects on process. Substrate preheating could increase geometrical sizes of metal thin layers, and obviously reduce cooling rate and temperature gradient. The single scanning direction is helpful for maintaining the conformity of deposition appearance.

    摘要 i 誌謝 xii 目錄 xiii 表目錄 xvi 圖目錄 xvii 符號表 xxii 第一章 緒論 1 1-1 前言 1 1-1-1 積層製造原理與應用 1 1-1-2 積層製造技術種類 3 1-1-3 定向性能量沉積技術 5 1-2 文獻回顧 8 1-2-1 DED加工技術之歷史回顧 8 1-2-2 DED製程之數值模擬方法介紹 8 1-2-3 DED製程參數與產品品質之分析 12 1-2-4 DED製程中熔池馬蘭戈尼效應之影響性 18 1-3 研究背景與目的 20 1-4 全文架構 21 第二章 基礎理論 22 2-1 雷射理論 22 2-1-1 雷射工作原理 22 2-1-2 二極體雷射介紹 24 2-1-3 高斯雷射能量分布介紹 27 2-2 不鏽鋼介紹 33 2-3 金屬固化理論與金相名詞介紹 35 第三章 研究方法 38 3-1 物理模型 38 3-1-1 基本假設 40 3-1-2 統御方程式 41 3-1-3 初始條件與邊界條件 41 3-2 不鏽鋼316L熱物理性質 44 3-3 數值模擬流程 49 3-3-1 基板熔池模擬 49 3-3-2 預估金屬薄層之堆疊幾何尺寸方法 51 3-3-3 DED製程之溫度場模擬方法 54 3-3-4 多層金屬薄層之堆疊外形優化方法與實驗驗證 58 3-4 物理模型測試 64 3-4-1 網格獨立測試 64 3-4-2 時間步伐測試 67 3-5 實驗驗證 69 3-5-1 溫度場驗證 72 3-5-2 金屬薄層幾何尺寸驗證 76 第四章 結果與討論 81 4-1 多層固定製程參數之結果探討 81 4-1-1 金屬薄層幾何尺寸之比較 82 4-1-2 金屬薄層冷卻速率之比較 87 4-2 製程參數最佳化分析 90 4-3 多層堆疊外形優化結果探討 99 4-4 進階製程熱分析探討 104 4-4-1 加工停滯時間長短之影響 104 4-4-2 基板預熱之影響 106 4-4-3 單向與雙向加工掃動方式之影響 115 第五章 結論與未來工作 119 5-1 結論 119 5-2 未來工作 120 參考文獻 121

    1. I. Gibson, D. Rosen , and B. Stucker, “Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing Second Edition,” Springer, 2010.
    2. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, “Review of selective laser melting: Materials and applications,” Applied Physics Reviews, Vol. 2, 041101, 2015.
    3. G.K. Lewis and E. Schlienger, “Practical considerations and capabilities for laser assisted direct metal deposition,” Materials & Design, Vol. 21, pp. 417-423, 2000.
    4. R. Ye, J.E. Smugeresky, B. Zheng, Y. Zhou, and E.J. Lavernia, “Numerical modeling of the thermal behavior during the LENS® process,” Materials Science and Engineering A, Vol. 428, pp. 47-53, 2006.
    5. J.C. Heigel, P. Michaleris, and E.W. Reutzel, “Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V,” Additive Manufacturing, Vol. 5, pp. 9-19, 2015.
    6. M. Hao and Y. Sun, “A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach,” International Journal of Heat and Mass Transfer, Vol. 64, pp. 352-360, 2013.
    7. L. Wang and S. Felicelli, “Process Modeling in Laser Deposition of Multilayer SS410 Steel,” Journal of Manufacturing Science and Engineering, Vol. 129, pp. 1028-1034, 2007.
    8. P. Michaleris, “Modeling metal deposition in heat transfer analyses of additive manufacturing processes,” Finite Elements in Analysis and Design, Vol. 86, pp. 51-60, 2014.
    9. P. Peyre, P. Aubry, R. Fabbro, R. Neveu, and A. Longuet, “Analytical and numerical modelling of the direct metal deposition laser process,” Journal of Physics D: Applied Physics, Vol. 41, Number 2, 2008.
    10. 朱紅鈞, “FLUENT 15.0流場分析實戰指南,” 人民郵電出版社, 2015.
    11. L. Wang, S. Felicelli, Y. Gooroochurn, P.T. Wang, and M.F. Horstemeyer, “Optimization of the LENS® process for steady molten pool size,” Materials Science and Engineering A, Vol. 474, pp. 148-156, 2008.
    12. V. Manvatkar, A. De, and T. DebRoy, “Heat transfer and material flow during laser assisted multi-layer additive manufacturing,” Journal of Applied Physics, Vol. 116, 124905, 2014.
    13. Z. Gan, G. Yu, X. He, and S. Li, “Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel,” International Journal of Heat and Mass Transfer, Vol. 104, pp. 28-38, 2017.
    14. Y. S. Lee and D. F. Farson, “Surface tension-powered build dimension control in laser additive manufacturing process,” The International Journal of Advanced Manufacturing Technology, Vol. 85, pp. 1035-1044, 2016.
    15. L.X. Yang, X.F. Peng, and B.X. Wang, “Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 4465-4473, 2001.
    16. R. Klein, “Laser Welding of Plastics,” Wiley-VCH, 2011.
    17. 楊隆昌, “雷射發展的趨勢與應用”, September, 2014.
    18. “Gaussian Beam Optics,” Available: http://www.cvimellesgriot.com/.1919–1928, August 1997.
    19. S. Louhenkilpi and F. Imre,“A lézersugár jellemzése,” Anyagtudományi folyamatszimuláció - Hőkezelés modellezése, 2011.
    20. 謝之駿, “不銹鋼材料,” 國立中興大學。
    21. 張正文, “不銹鋼鋼種性質及其應用,” 燁聯鋼鐵研發部製程技術處。
    22. 陳瑞凱, 詹益愷, “不鏽鋼種類與材質磁性的關係,” 國立清華大學。
    23. V. Fallah, M. Alimardani, S.F. Corbin, and A. Khajepour, “Temporal development of melt-pool morphology and clad geometry in laser powder deposition,” Computational Materials Science, Vol. 50, pp. 2124-2134, 2011.
    24. J. Zhang, F. Liou, W. Seufzer, and K. Taminger, “A coupled finite element cellular automaton model to predict thermal history and grain morphology of Ti-6Al-4V during direct metal deposition (DMD),” Additive Manufacturing, Vol. 11, pp. 32-39, 2016.
    25. Y. Huang, M.B. Khamesee, and E. Toyserkani, “A comprehensive analytical model for laser powder-fed additive manufacturing,” Additive Manufacturing, Vol. 12, pp. 90-99, 2016.
    26. E. Toyserkani, A. Khajepour, and S. Corbin,“3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process,” Optics and Lasers in Engineering, Vol. 41, Issue 6, pp. 849-867, 2004.
    27. J. Xiong, Y. Lei, and R. Li, “Finite element analysis and experimental validation of thermal behavior for thin-walled parts in GMAW-based additive manufacturing with various substrate preheating temperatures,” Applied Thermal Engineering, Vol. 126, pp. 43-52, 2017.
    28. H. Zhao, G. Zhang, Z. Yin, and L. Wu, “A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping,” Journal of Materials Processing Technology, Vol. 211, pp. 488-495, 2011.
    29. J. Yang and F. Wang, “3D finite element temperature field modelling for direct laser fabrication,” The International Journal of Advanced Manufacturing Technology, Vol. 43, pp. 1060-1068, 2009.
    30. Z. Zhang, P. Farahmand, and R. Kovacevic, “Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser,” Materials and Design, Vol. 109, pp. 686-699, 2016.
    31. D. Hu and R. Kovacevic, “Modelling and measuring the thermal behaviour of the molten pool in closed-loop controlled laser-based additive manufacturing,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2003
    32. K.C. Mills,“Recommended values of thermophysical properties for selected commercial alloy,” Woodhead Publishing, 2002.
    33. Z. Gan, H. Liu, S. Li, X. He, and G. Yu, “Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron,” International Journal of Heat and Mass Transfer, Vol. 111, pp. 709-722, 2017.
    34. G. Zhu, A. Zhang, D. Li, Y. Tang, Z. Tong, and Q. Lu, “Numerical simulation of thermal behavior during laser direct metal deposition,” The International Journal of Advanced Manufacturing Technology, Vol. 55, pp. 945-954, 2011.
    35. Y.A. Cengel,“Heat and Mass Transfer: A Practical Approach,” McGraw-Hill, pp. 20, 2006.
    36. E.W. Lemmon and R.T. Jacobsen,“Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air,” International Journal of Thermophysics, Vol. 25, pp 21-69, 2004.

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE