簡易檢索 / 詳目顯示

研究生: 劉林威
Liu, Lin-Wei
論文名稱: 不同外徑長/短軸長度比橢圓管 在循環彎曲負載下外徑短軸變化與 臨界外徑短軸變化之研究
Study on the Outer Minor Axis Variation and Critical Outer Minor Axis Variation of Elliptical Tubes with Different Major / Minor Axis Ratios under Cyclic Bending
指導教授: 潘文峰
Pan, Wen-Feng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 75
中文關鍵詞: SUS 304不鏽鋼橢圓管循環彎曲不同外長軸/外短軸長度比外短軸變化臨界外短軸變化循環圈數控制曲率
外文關鍵詞: SUS 304 stainless steel elliptical tube, cyclic bending, different outer long axis/outer short axis length ratios, outer short axis variation, critical outer short axis variation, number of cycles, controlled curvature
相關次數: 點閱:109下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對不同外長軸/外短軸長度比SUS304不鏽鋼橢圓管承受循環彎曲負載下的行為做研究。主要關注的行為有:外短軸變化-循環圈數的關係與臨界外短軸變化-控制曲率的關係,其中外短軸變化定義為外短軸長度變化量/初始外短軸長度,而本研究使用了四種不同外長軸/外短軸長度比分別為:1.5、2.0、2.5與3.0。
    依據實驗結果,本研究所觀察到的外短軸變化-循環圈數的關係可分為四個階段: 初始、第二、第三與第四階段,其中初始階段與第二階段的外短軸變化呈現穩定成長,從第二階段結束後進入第三階段,橢圓管開始出現裂痕,外短軸變化量會急速上升,而在第三階段結束後進入第四階段,外短軸變化量趨於平緩,但很快的橢圓管就完全斷裂,依據此現象,本研究將聚焦於前兩階段的探討。
    由實驗外短軸變化-循環圈數的關係可得知,在固定控制曲率下,橢圓管的外長軸/外短軸長度比越大時,其外短軸變化成長就越快,到達斷裂的循環圈數就越少;而在相同的外長軸/外短軸長度比下,控制曲率越大時,則外短軸變化成長就越快,到達斷裂的循環圈數就越少。至於在實驗臨界外短軸變化-控制曲率的關係可得知,當外徑長/短軸比越大,臨界外短軸變化就越大。最後,本文提出可描述外短軸變化-循環圈數關係與臨界外短軸變化-控制曲率的相關理論公式,並將理論數據與實驗數據比對後發現,本研究所提出的理論公式能夠合理描述實驗結果。

    This study focuses on the behavior of SUS304 stainless steel elliptical tubes with different outer long axis/outer short axis length ratios under cyclic bending loads.The main behaviors of interest are the relationship between the outer short axis variation and the number of cycles, and the relationship between the critical outer short axis variation and the controlled curvature. The outer short axis variation is defined as the change in the outer short axis length divided by the original outer short axis length. This study uses four different outer long axis/outer short axis length ratios: 1.5, 2.0, 2.5, and 3.0.
    Based on the experimental results, the relationship between the outer short axis variation and the number of cycles can be divided into four stages: initial, second, third, and fourth stages. In the initial and second stages, the outer short axis variation exhibits stable growth. After the second stage ends, the elliptical tube enters the third stage, where cracks begin to appear, and the outer short axis variation increases rapidly. After the third stage ends, the outer short axis iii variation levels off in the fourth stage, but the elliptical tube soon completely fractures. Based on this phenomenon, this study focuses on the first two stages.
    From the experimental relationship between the outer short axis variation and the number of cycles, it can be observed that at a fixed controlled curvature, the larger the outer long axis/outer short axis length ratio of the elliptical tube, the faster the outer short axis variation grows, and the fewer cycles it takes to reach fracture. At the same outer long axis/outer short axis length ratio, the larger the controlled curvature, the faster the outer short axis variation grows,and the fewer cycles it takes to reach fracture. Regarding the experimental relationship between the critical outer short axis variation and the controlled curvature, it can be observed that the larger the outer diameter long/short axis ratio, the larger the critical outer short axis variation.
    Finally, this paper proposes theoretical formulas that can describe the relationship between the outer short axis variation and the number of cycles, as well as the critical outer short axis variation and the controlled curvature. By comparing the theoretical data with the experimental data, it is found that the theoretical formulas proposed in this study can reasonably describe the experimental results.

    摘要 i 致謝 xvii 目錄 xviii 表目錄 xx 圖目錄 xxi 符號說明 xxiv 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 1 1-3 研究目的 8 第二章 實驗設備 9 2-1 彎管實驗機 9 2-2 油壓伺服控制系統 13 2-3 人機介面控制系統 20 2-4 檢測儀器 22 第三章 實驗原理 27 3-1 實驗的材料與規格 27 3-2 實驗方法與原理 29 3-3 實驗操作程序與安全措施 31 3-4 實驗數據的推演與統整 32 第四章 實驗結果與理論分析 35 4-1 實驗結果 35 4-2 理論分析 40 第五章 結論 46 參考文獻 47

    1. L. G. Brazier, “On the flexure of thin cylindrical shells and other thin sections”, Proceedings of the Royal Society, Series A, Vol. 116, No. 773, pp. 104-114 (1927).
    2. S. Kyriakides and P. K. Shaw, “Response and stability of elastoplastic circular pipes under combined bending and external pressure”, International Journal of Solids and Structures, Vol. 18, No. 11, pp. 957-973 (1982).
    3. P. K. Shaw and S. Kyriakides, “Inelastic analysis of thin-walled tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 21, No. 11, pp. 1073-1100 (1985).
    4. S. Kyriakides and P. K. Shaw, “Inelastic buckling of tubes under cyclic loads”, Journal of Pressure Vessel Technology, Vol. 109, No. 2, pp. 169-178 (1987).
    5. E. Corona and S. Kyriakides, “On the collapse of inelastic tubes under combined bending and pressure”, International Journal of Solids and Structures, Vol. 24, No. 5, pp. 505-535 (1988).
    6. E. Corona and S. Kyriakides, “An experimental investigation of the degradation and buckling of circular tubes under cyclic bending and external pressure”, Thin-Walled Structures, Vol. 12, No. 3, pp. 229-263 (1991).
    7. E. Corona and S. Vaze, “Buckling of elastic-plastic square tubes under bending”, International Journal of Mechanical Science, Vol. 38, No. 7, pp. 753-775 (1996).
    8. W. F. Pan, T. R. Wang and C. M. Hsu, “A curvature-ovalization measurement apparatus for circular tubes under cyclic bending”, Experimental Mechanics, Vol. 38, No. 2, pp. 99-102 (1998).
    9. W. F. Pan and Y. S. Her, “Viscoplastic collapse of thin-walled tubes under cyclic bending”, ASME Journal of Engineering Materials and Technology, Vol. 120, No. 4, pp. 287-290 (1998).
    10. W. F. Pan and C. H. Fan, “An experimental study on the effect of curvature-rate at preloading stage on subsequent creep or relaxation of thin-walled tubes under pure bending”, JSME International Journal, Series A, Vol. 41, No. 4, pp. 525-531 (1998).
    11. K. L. Lee, W. F. Pan and J. N. Kuo, “The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 38, No. 14, pp. 2401-2413 (2001).
    12. W. F. Pan and K. L. Lee, “The effect of mean curvature on the response and collapse of thin-walled tubes under cyclic bending”, JSME International Journal, Series A, Vol. 45, No. 2, pp. 309-318 (2002).
    13. K. H. Chang, C. M. Hsu, S. R. Sheu and W. F. Pan, “Viscoplastic response and collapse of 316L stainless steel under cyclic bending”, Steel and Composite Structures, Vol. 5, No. 5, pp. 359-374 (2005).
    14. K. H. Chang, W. F. Pan and K. L. Lee, “Mean moment effect on circular thin-walled tubes under cyclic bending”, Structural Engineering and Mechanics, Vol. 28, No. 5, pp. 495-514 (2008).
    15. K. H. Chang and W. F. Pan, “Buckling life estimation of circular tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 46, No. 2, pp. 254-270 (2009).
    16. K. L. Lee, C. Y. Hung and W. F. Pan, “Variation of ovalization for sharp-notched circular tubes under cyclic bending”, Journal of Mechanics, Vol. 26, No. 3, pp. 403- 411 (2010).
    17. K. L. Lee, C. M. Hsu and W. F. Pan, “Response of sharp-notched circular tubes under bending creep and relaxation”, Mechanical Engineering Journal, Vol. 1, No. 2, pp. 1-14 (2014).
    18. K. L. Lee, C. M. Hsu and W. F. Pan, “Response of sharp-notched circular tubes under bending creep and relaxation”, Mechanical Engineering Journal, Vol. 1, No. 2, pp. 1-14 (2014).
    19. 溫慶源,“不同外徑/壁厚比與不同圓孔直徑圓孔管在循環彎曲負載下橢圓化成長與臨界橢圓化之研究”,國立成功大學工程科學研究所碩士論文(2022).
    20. 王子恆,“不同長/短軸長度長度比橢圓形管在循環彎曲負載下響應的實驗研究”,國立成功大學工程科學研究所碩士論文(2023).
    21. K. L. Lee, C. C. Chung and W. F. Pan, “Growing and critical ovalization for sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending”, Journal of Chinese Institute of Engineers, Vol. 39, No. 8, pp. 926-935 (2016).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE