簡易檢索 / 詳目顯示

研究生: 周威廷
Chou, Wei-Ting
論文名稱: 設計三維震動平臺以探討對腦性麻痺兒童肌肉張力平衡協調的影響
A 3-D Vibration Platform Design to Investigate the Effects on Muscle Tone and Coordination for the Cerebral Palsied
指導教授: 鍾高基
Chung, Kao-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 79
中文關鍵詞: 腦性麻痺肌肉張力運動治療鐘擺測試
外文關鍵詞: pendulum test, muscle tone, cerebral palsy, whole body motion
相關次數: 點閱:81下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦性麻痺患者的障礙多樣而複雜,其中肢體動作功能障礙是主要的問題,而肌肉張力異常為肢體障礙癥結所在。一旦肌肉張力問題獲得改善,靜態姿勢的維持、動作功能性的表現、獨立之日常生活的表現都可獲得實質上的進步。學者Fay、Knott、Voss、Bobath以及Ayres使用震動、旋轉的運動治療方式作為實驗的療程,結果顯示此種治療的方式有降低高肌肉張力現象、正常化身體坐姿擺位以及增加動態功能性動作穩定度的效果。但此種身體刺激缺乏量化的輸入,以致於其沒有經過系統性的評估而不能達到最大的療效。本研究目的為設計可在三維(前後、上下與左右)提供振幅、頻率皆為可調震動方式的平臺,以提供腦性麻痺兒童量化的運動刺激,並建立鐘擺測試(Pendulum Test)系統以量化並評估運動刺激對於腦性麻痺兒童肌肉張力的影響。

    震動平臺採用機電系統設計架構,其包含X與Z軸震動系統、訊號傳輸介面系統與GUI人機操作介面系統。X與Z軸震動系統採用相同的設計架構,可提供擬正弦波的震動波形。其中單軸的震動系統由連桿機構組(linkage)、滾珠螺桿(ball screw)、傳動皮帶、圓盤、交流馬達(A.C. motor) 與變頻器(inverter)、伺服馬達(servo motor) 與伺服器(A.C. servo)、編碼器(encoder)所組成。訊號傳輸介面主體為ADLINK 8164運動卡與ADLINK 9112卡。人機操作介面系統採用工業電腦以達穩定的操作環境,作業系統則採用Windows 2000,GUI 操作介面為以Borland C++ Builder 5.0所撰寫。平臺的校正包含9112卡迴授波形訊號、波形震幅與波形頻率。鐘擺測試與肌電量測評估系統用以評估震動治療的效果,其由可調式座椅、膝關節角度量測系統、肌電訊號量測系統、訊號處理與紀錄設備所組成,系統採用5位正常受測者以Intraclass Correlation Coefficient(I.C.C.)評估系統的信賴度(Reliability)。

    經過校正與測試後本震動平臺在X軸的最大振動頻率1.08 Hz,振幅範圍為2 ~ 8 cm,最大加速度為0.33。Z軸最大振動頻率為1.85 Hz,振幅範圍亦為2 ~ 8 cm,最大加速度為0.82。X與Z軸在震動震幅愈大時則與正弦波的差異愈大,其中X軸在震幅最小為20mm時,mean square error為89.8 mm2,在震幅最大80 mm時,mean square error為786.2 mm2。Z軸在震幅最小為20mm時,mean square error為66.84 mm2,在震幅最大80 mm時,mean square error為865.34 mm2。分別以空載、100 kg、150 kg與200 kg所進行的載重測試中顯示載重對於平臺的輸出平率亦有影響。在正常人鐘擺測試與肌電量測評估系統信賴度測試中,其結果顯示膝關節黏彈系統的阻尼係數(damping coefficient)具有較高的穩定與重複性。

    本震動平臺可提供神經肌肉病變族群(如腦性麻痺患者)在震動控制感覺刺激輸入上的療效研究。未來本平臺震動波形的設計可採取建立震動波形函數配合電腦模擬的方式決定連桿機構的尺寸,以獲得正確的正弦波形輸出。鐘擺評估測試系統則可增加機械式腿部釋放機構以減少人為操作誤差,並配合臨床醫療人員使用本震動平臺與評估系統對腦性麻痺患者進行系統性的療程實驗。

    The cerebral palsied have multiple function disabilities, particularly motor function problems resulted from abnormal muscle tone and reflex. Literatures showed that reducing high muscle tone is leading to improve the patients’ alignment of position and motor function performance as well as independence of their daily activities. Fay, Knott, Voss, Bobath, and Ayres applied whole body motion such as vibration and rotation therapeutic interventions as their clinical treatment. The results of motion and/or vibration treatment showed significant changes toward normalized muscle tone, better body positioning, and dynamic stability of motor function. Quantitative investigation of body motion stimulation may lead to better understanding of the effects of such whole body motion.This research was aimed to develop a vibration platform with adjustable frequency and amplitude in the orthogonal coordinate directions to provide 3-D controlled motion stimulation for therapeutic intervention. A pendulum test system and an electromyography were set up to evaluate the effects of treatment on muscle tone for the cerebral palsied.

    The vibration platform is through mechtronic design and consists of X and Z axis vibration systems, signal transmitting interface, and GUI operation interface. X and Z vibration systems are designed by the same components to provide quasi-sine wave vibration with adjustable amplitude and frequency using a linkage, a set of ball screw, a conveying belt, a disk, an A.C. motor, an inverter, a servo motor, an A.C. servo, and an encoder. Signal transmitting interface consists of an ADLINK 8164 motion card and an ADLINK 9112 A/D signal acquisition card interfaced to an industrial personal computer. The GUI interface is written in Borland C++ Builder 5.0. The performance of X and Z vibration systems is calibrated for the vibration amplitude and frequency. The consistency of pendulum testing system and electromyography has been conducted by 5 normal subjects using intraclass correlation coefficient (I.C.C.) analysis.

    The vibration platform has a maximum working frequency up to 1.08 Hz for the X axis and 1.85 Hz for the Z axis. The range of adjustable amplitude range is between 2 and 8cm for both X and Z axes. The maximal acceleration is 0.33in X axis and 0.82 in Z axis. As the amplitude of X and Z axis is increasing, the bias between the output vibration wave and the theoretical sine wave also increases. With unloading, 100 kg, 150 kg, and 200 kg loading test, frequency variations are found for the system characteristics under different loading conditions. The consistency test of pendulum test shows elastic coefficient is very stable and reproduciable (I.C.C. = 0.823).

    The vibration platform can provide controllable vibration stimulation with specified frequency, amplitude, and acceleration parameters to systematically investigate therapeutic effects of vibration stimulation on the cerebral palsied. The future work is suggested to develop a mathematical modeling and computer simulation in the determination of adequate link dimensions and accurate sine vibration wave output. Auto-mechanical releasing mechanism could be designed to avoid pendulum test operation error. Working together with clinical therapists, experimental protocols are suggested to be developed for investigating the effects of whole body vibration on clinical efficacy.

    中文摘要...................................................I ABSTRACT.................................................III 誌謝.......................................................V 目錄......................................................VI 表目錄...................................................VII 圖目錄....................................................IX 第一章 緒論 1.1 腦性麻痺..........................................1 1.2 腦性麻痺的運動療..................................3 1.3 神經肌肉控制論....................................5 1.4 運動治療文獻回顧..................................6 1.5 鐘擺測試(Pendulum Test)於肌肉張力之量化評估.......8 1.5.1 直接鐘擺測試參數(Direct Pendulum Test Paremeters)....................................9 1.5.2 鐘擺測試動態膝關節模擬參數(Dynamic Knee Joint Model of Pendulum Test).......................10 1.6 肌電訊號於肌肉張力的量化評估.....................12 1.6.1 電極種類及其優缺點............................12 1.6.2 表面肌電訊號之電生理特性......................12 1.6.3 肌電訊號之分析參數及其意義....................13 1.7 研究動機與目的...................................13 1.7.1 研究特殊目的..................................14 1.8 研究假說與重要性.................................14 第二章 材料與方法 2.1 三維震動平臺系統設計架構........................................................15 2.2 X與Z軸震動系統...................................16 2.2.1 連桿機構設計與運動函數........................16 2.2.2 連桿機構之驅動................................25 2.3 訊號傳輸介面系統.................................25 2.3.1 運動波形震幅與頻率的校正......................28 2.4 人機操作介面系統.................................30 2.5 坐姿擺位系統與各式輪椅的搭載.....................32 2.6 鐘擺測試與肌電訊號量測評估系統...................36 2.7 實驗對象.........................................38 2.8 運動治療與評估實驗流程...............................38 2.9 評估參數與資料統計分析...............................41 第三章 結果與討論 3.1 震動平臺系統實現.................................42 3.2 震動平臺系統校正結果.............................46 3.3 震動波形輸出結果.................................58 3.4 震動平臺載重測試.................................62 3.5 鐘擺測試系統信賴度測試結果.......................66 第四章 結論..............................................75 參考文獻..................................................76

    【1】莊宏達,腦性麻痺而的肢體照顧,瑪利亞文教基金會,1993

    【2】林建宏,腦性麻痺坐姿擺位特殊輪椅之模組化設計與製造,成功大學醫學工程研究所
    碩士論文,2001

    【3】Shereen D. Farber,Neurehabilitation:a multisensory approach,Saunder,1982

    【4】Barbara Heine,Hippotherapy:a multisystem approach to the treatment of
    neuromuscular disorders,Australian Physiotherapy,Vol.43,NO.2,1997,145-149

    【5】林志杰,半側偏癱瘓者步行前的動靜態平衡訓練及評估,國立成功大學醫學工程研究所
    碩士論文,1996

    【6】Nancy H McGibbon,Effect of an equine-movement therapy program on
    gait,energy expenditure,and motor function in children with spastic
    cerebral palsy:a pilot study,Developmental Medicine&Child Neurolog
    1998,NO.40:754-762

    【7】Barbara Heine,Hippotherapy:a multisystem approach to the treatment of
    neuromuscular disorders,Australian Physiotherapy,Vol. 43,NO 2,1997,145-149

    【8】James W. Fee Jr. and Katherine T. Samworth,Passive Leg Motion
    Changes in Cerebral Palsied Children After Whole Body Vertical
    Accelerations,IEEE Transactions on Rehabilitation Engineering,
    Vol.3,NO.2,June,1995

    【9】Sanna Mattila-Rautiainen,Biomechanical aspects to study riders’
    lumbar and spinal area movements in therapeutic riding,Scientific&
    Educational Journal of Therapeutic Riding,61-75,2000

    【10】T. Bajd and B. Bowmant,Testing and Modellign of
    Spasticity,J.Biomed.Eng.1982,Vol.4,April

    【11】T. Bajd and L. Vodovnik, Pendulum Testing of Spasticity,
    J. Biomed.,Eng.,Vol. 6,pp.9-16,1984

    【12】L.Vodovnik, B. R. Brown , and T. Bajd, Dynamics of Spastic
    Knee Joint, Med & Biol. Eng. & Comput.,1984,22,63-69

    【13】唐永雯,半側偏癱患者的痙攣量化評估:利用下肢被動鐘擺測
    試與肌電圖,國立成功大學醫學工程研究所碩士論文,1998

    【14】林冠州,利用肌電訊號探討坐姿擺位對痙攣型腦性麻痺兒童肌
    肉張力的影響,成功大學醫學工程研究所碩士論文,1997

    【15】Robert L. Norton & 謝慶雄,機構學,美商麥格羅希爾國際股
    份有限公司,1998

    【16】黃智明,坐姿擺位支撐對重度腦性麻痺患者肌肉張力之影響, 國立成功大學醫學
    工程研究所碩士論文,1992

    下載圖示 校內:2004-08-26公開
    校外:2004-08-26公開
    QR CODE