| 研究生: |
黃仁炫 Huang, Ren-hyun |
|---|---|
| 論文名稱: |
非平面之銅薄膜表面形成石墨烯之研究 A study of graphene formation at nonplanar copper thin film surfaces |
| 指導教授: |
彭洞清
Perng, Dung-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 36 |
| 中文關鍵詞: | 石墨烯 、銅內連線 、粗糙度 、覆蓋率 |
| 外文關鍵詞: | Cu interconnect, Roughness, Coverage |
| 相關次數: | 點閱:109 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨稀是只有一個碳原子厚度的二維材料,由於石墨稀的特殊碳鍵結,即便是單層石墨稀,原子、分子、離子是穿不透的,也已經被證明有極高的抗氧滲透的特性,也有很好的熱與化學穩定性。超薄(1 nm)石墨稀當積體電路銅內連線之擴散阻障層已被證實,其優異之阻障特性給了延續使用銅內連線之希望,因為1nm遠超越ITRS技術藍圖之要求,然而石墨稀優異之平面阻障特性並不意味著有3D阻障功能。本論文研究3D之銅薄膜表面是否可形成石墨稀及石墨稀於銅晶粒間之連續程度。
實驗結果顯示由於濺鍍之銅薄膜於高溫(900度C)退火時,銅晶粒成長相當不規則,銅表面呈現高低起伏極大之粗糙表面,石墨稀僅能在與平坦的SiO2交接之界面形成,銅薄膜上表面及側面退火後極為粗糙,TEM下找不到石墨稀之蹤影。另外,微影形成之銅線,因為高溫後de-wetting不規則,亦無法形成平滑之銅表面,因此亦未能達到石墨烯覆蓋銅線的目標石墨烯要能完整覆蓋在奈米之銅線上,未來仍有一段長遠的路需要努力。
Graphene, a two-dimensional allotrope of carbon atoms with a hexagonal lattice structure, is impermeable to atoms, molecules, and ions, even when it is a single layer. Strong oxidation resistance has been reported. One nanometer thin graphene as a Cu diffusion barrier layer had also been reported. The diffusion barrier performance of a 1-nm thick graphene is superior to any material studied and thickness also exceeds ITRS’s requirement. However, superior plane diffusion barrier performance does not mean its 3D performance in a real Cu interconnect. In this thesis, study of 3D graphene growth on sputtered Cu thin film has been carried out. Graphene growth in the junctions of Cu grain boundaries are observed. Preliminary results show that graphene grows only at the interface between Cu and SiO2 (substrate). No graphene was found in all other surfaces (side and top) because the Cu film became very rough after the 900C annealing which resulted in Cu grains growth. In addition, a lithography patterned Cu lines are not possible to grow continuous graphene because Cu surfaces are very rough due to uneven de-wetting during the annealing. The path to implement graphene as a diffusion barrier layer for IC Cu interconnect is still far away, it definite will need a lot more efforts in research.
[1] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “of Monolayer Graphene,” Science (80-. )., vol. 321, no. July, pp. 385–388, 2008.
[2] R. R. Nair, P. Blake, a. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and a. K. Geim, “Fine Structure Constant Defines Visual Transperency of Graphene,” Science (80-. )., vol. 320, no. June, p. 2008, 2008.
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science (80-. )., vol. 306, no. 5696, pp. 666–669, 2004.
[4] A. K. Geim, K. S. Novoselov, and P. Bimonthly, “石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展,” pp. 155–162, 2011.
[5] X. Liang, Z. Fu, and S. Y. Chou, “Graphene transistors fabricated via transfer-printing in device active-areas on large wafer,” Nano Lett., vol. 7, no. 12, pp. 3840–3844, 2007.
[6] M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y. L. Chueh, Y. Zhang, R. Maboudian, and A. Javey, “Metal-catalyzed crystallization of amorphous carbon to graphene,” Appl. Phys. Lett., vol. 96, no. 6, pp. 4–6, 2010.
[7] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators,” Appl. Phys. Lett., vol. 93, no. 11, 2008.
[8] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, “Chemical vapor deposition of thin graphite films of nanometer thickness,” Carbon N. Y., vol. 45, no. 10, pp. 2017–2021, 2007.
[9] X. Li, W. Cai, L. Colombo, and R. S. Ruoff, “Evolution of graphene growth on Ni and Cu by carbon isotope labeling,” Nano Lett., vol. 9, no. 12, pp. 4268–4272, 2009.
[10] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils.,” Science (80-. )., vol. 324, no. 5932, pp. 1312–1314, 2009.
[11] Z. Juang, Y. Zhong, F. Chen, and L. Li, “Substrates by Chemical Vapor Deposition,” Nano Lett., no. 11, pp. 3612–3616, 2011.
[12] J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano, vol. 4, no. 1, pp. 43–48, 2010.
[13] X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett., vol. 8, no. 1, pp. 323–327, 2008.
[14] D. Makarov, M. Melzer, D. Karnaushenko, and O. G. Schmidt, “Shapeable magnetoelectronics,” Appl. Phys. Rev., vol. 3, no. 1, 2016.
[15] D. Kondo, S. Sato, K. Yagi, N. Harada, M. Sato, M. Nihei, and N. Yokoyama, “Low-temperature synthesis of graphene and fabrication of top-gated field effect transistors without using transfer processes,” Appl. Phys. Express, vol. 3, no. 2, 2010.
[16] J.-H. Kim, Y. Liang, and S. Seo, “Patchable thin-film strain gauges based on pentacene transistors,” Org. Electron., vol. 26, pp. 355–358, 2015.
[17] G. Eda, Y. Y. Lin, S. Miller, C. W. Chen, W. F. Su, and M. Chhowalla, “Transparent and conducting electrodes for organic electronics from reduced graphene oxide,” Appl. Phys. Lett., vol. 92, no. 23, pp. 3–5, 2008.
[18] J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, and P. Bøggild, “Graphene mobility mapping,” Sci. Rep., vol. 5, p. 12305, 2015.
[19] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, no. 9–10, pp. 351–355, 2008.
[20] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep., vol. 473, no. 5–6, pp. 51–87, 2009.
[21] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science (80-. )., vol. 324, no. 5932, pp. 1312–1314, 2009.
[22] D. Ho Mer Lin, D. Manara, P. Lindqvist-Reis, T. Fanghänel, and K. Mayer, “The use of different dispersive Raman spectrometers for the analysis of uranium compounds,” Vib. Spectrosc., vol. 73, pp. 102–110, 2014.
[23] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved raman spectroscopy of single- and few-layer graphene,” Nano Lett., vol. 7, no. 2, pp. 238–242, 2007.
[24] K. S. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes.,” Nature, vol. 457, no. 7230, pp. 706–10, 2009.
[25] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett., vol. 97, no. 18, pp. 1–4, 2006.
[26] R. S. Das and Y. K. Agrawal, “Raman spectroscopy: Recent advancements, techniques and applications,” Vib. Spectrosc., vol. 57, no. 2, pp. 163–176, 2011.
校內:2018-08-01公開