簡易檢索 / 詳目顯示

研究生: 李國任
Lee, Guo-Ren
論文名稱: 不同金屬電極及傳輸通道設計之氧化鋅薄膜電晶體電性研究
Electrical Properties of ZnO Thin Film Transistors with Various Metal Electrodes and Channel Designs
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 110
中文關鍵詞: 通道長度薄膜電晶體金屬電極
外文關鍵詞: TFT, channel, electrodes
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對薄膜電晶體之金屬電極與半導體層之接觸進行探討,以不同金屬作為電極,量測其接觸電阻,並探討接觸電阻與薄膜電晶體電性之間的關係。此外,亦透過不同通道設計變化來探討不同金屬於不同通道設計下對薄膜電晶體元件表現的差異。實驗上以p-型矽(100)作為薄膜電晶體的閘極,而以500 nm二氧化矽層作為薄膜電晶體之絕緣層,並利用氧化鋅靶材以反應性磁控濺鍍法將厚度為50 nm之氧化鋅濺鍍於二氧化矽上。之後,透過電子束蒸鍍系統將四種金屬鋁(Al)、鈦(Ti)、鉭(Ta)、鎳(Ni)分別鍍於氧化鋅薄膜上,金屬層厚度控制在大約120 nm左右。完成金屬電極製作後,於同一試片上進行薄膜電晶體電性量測以及接觸電阻之量測,藉以比較由不同金屬與氧化鋅接合所產生之接觸電阻對整個薄膜電晶體元件電性表現影響並且從材料分析角度探討其原因。
    本實驗利用X光繞射儀鑑定氧化鋅薄膜的晶體結構與結晶特性;使用X光光電子能量分析儀觀察由薄膜表面至內部的化學組成及鍵結的變化,再輔以拉賽福背向散射分析儀對氧化鋅薄膜進行組成成份鑑定;以穿透式電子顯微鏡觀察電晶體結構之截面影像以及氧化鋅薄膜之微結構影像;最後,以紫外光-可見光光學儀測得薄膜穿透率並計算得到光能隙(Eg)。
    薄膜電晶體電性表現以Agilent 4156C量測之,並萃取出TFT元件在不同金屬作為電極材料時之電性如飽和移動率( )、飽和電流值(ISat.)、起始電壓值(VTH)及開關比(On/Off ratio);利用Transmission Line Model(TLM)並以”金屬(Al、Ti、Ta、Ni)/氧化鋅(50nm)/二氧化矽(500nm)/矽”之試片進行接觸電阻值的量測與計算。
    X光繞射儀之結果確定本實驗所製備之氧化鋅為多晶結構; 使用X光光電子能量分析儀發現,本實驗所製備之三種不同金屬鋁、鈦、鉭皆會與鋅競爭氧原子,根據熱力學原理,鋁、鈦、鉭三種金屬形成氧化物所需之生成自由能皆比鋅小很多,而鎳金屬則反;從拉賽福背向散射分析儀之氧化鋅薄膜成分分析顯示,當氧化鋅薄膜厚度為50 nm時,O:Zn=0.95,確定本實驗之氧化鋅薄膜之傳導機制為氧空缺(Oxygen Vacancies);另外,透過穿透式電子顯微鏡之電晶體結構之截面影像以及氧化鋅薄膜之微結構影像,進一步確定了金屬層與氧化鋅層界面氧化情形以及氧化鋅薄膜之多晶結構;紫外光-可見光光學儀測得薄膜穿透率約為85%~90%,並計算得到光能隙(Eg),並了解由厚度不同所造成的Eg差異可能來自於不同厚度時,薄膜具有數量不同之氧空缺。
    接觸電阻的量測結果顯示,其鋁、鈦、鉭金屬與氧化鋅接面之接觸電阻值分別為0.0029( )、1.252( )、0.315( ),而鎳金屬與氧化鋅接觸部分由本實驗結果顯示無法量得接觸電阻值,亦無法萃取其TFT電性,主要原因是鎳金屬的功函數為5.15eV,比本實驗所製備之n-型氧化鋅之功函數(4.5eV)高0.65eV,構成形成蕭特基接觸之條件,為造成非歐姆接觸之主因。
    本實驗藉由不同電極通道之設計,獲得不同的TFT電性結果並且可歸納出一系列的電性趨勢。在相同金屬電極的TFT中,電極間傳輸通道越短,所量測出的飽和移動率( )、飽和電流值(ISat.)及開關比(On/Off ratio)皆隨電極傳輸通道長度下降而漸序上升,而起始電壓值(VTH)則反。相同電極寬度/傳輸通道長度(W/L)比值時,除了鎳金屬因為與氧化鋅形成蕭特基接觸與而鉭金屬數據部分可能因為其電極氧化形成Ta2O5,此氧化物的絕緣特性可能影響TFT電極處之current injection程度,導致其開關比、飽和電流值及漏電流之數據不甚理想,造成不可比較,故本實驗可歸納出在飽和電流值(ISat.)和開關比(On/Off ratio)方面,以鋁作為金屬電極之TFT大於以鈦作為金屬電極之TFT,而飽和移動率( )和起始電壓值(VTH)之趨勢則相反。

    As the design of the electrodes on Thin Film Transistor (TFT) plays a curial role in the determination of TFT electrical properties, we have investigated the differences in electrical properties of TFTs fabricated with different types of metals, such as Al, Ti, Ta, and Ni, used as source and drain electrodes along with various designs of channel width to length ratios (W/L). The structure of the TFTs was designed as bottom-type, in which the gate was made with p-type Si (100). In addition, 500 nm thick SiO2 serving as the insulator was thermally grown on to the gate. 50 nm thick active layer material, Zinc Oxide (ZnO) was prepared by magnetron sputtering prior to the growth of the metals on the ZnO surface by E-beam Evaporation.
    The crystal structure of fabricated ZnO thin film was identified by grazing incident angle x-ray diffractometer (GIAXRD). X-ray photoelectron spectroscopy (XPS) was applied for the composition and chemical bonding analysis of the interface between metals and ZnO layer. Rutherford backscattering spectroscopy (RBS) was utilized to examine the composition of ZnO thin film. The cross-sectional images and microstructure of the ZnO thin film were observed through high-resolution transmission electron microscopy (HRTEM). The optical transmittance of the ZnO thin films with various thicknesses were measured by UV-vis. spectrophotometer and their energy band gaps were calculated.
    The experimental results of GIXRD and HRTEM reveal that the ZnO thin film is polycrystalline structure. With RBS, we confirmed that the O/Zn ratio for 50 nm ZnO is around 0.95, so the conducting mechanism through oxygen vacancies of the ZnO thin film was implicated. XPS analysis showed the oxidation behaviors at the interface of different metals and ZnO layer with the support of HRTEM cross-sectional images. From the results of UV-vis., the transmittance of the ZnO thin film was measured around 85%~90% and energy band gap was calculated.
    The electrical properties of the TFT, such as Saturation Mobility( ), Saturation Current(ISat), Threshold Voltage(VTH), and On current and Off current ratio (On/Off ratio) were measured by Agilent 4156C; The contact resistance on samples of ”metals(Al, Ti,Ta,Ni)/ZnO(50nm)/SiO2(500nm)/Si” were measured and calculated through Transmission Line Model (TLM).
    The results of the contact resistance measurement and calculation of the Al/ZnO、Ti/ZnO、Ta/ZnO are 0.0029( )、1.252( )、0.315( ) respectively , the contact resistance of Ni/ZnO was not able to be measured due to its metal work function(5.15eV) is 0.65eV higher than the fabricated ZnO(4.5eV), making the contact a non-ohmic contact(shocktty contact).
    With various designs of channel width and length ratios (W/L), a series of electrical properties were summarized. If the metal material is the same, the , ISat , On/Off ratio all increased with only the VTH went down when the distance of the electrodes was shortened. If the electrode width and conducting channel length ratio (W/L) is fixed, the ISat and On/Off ratio of Al electrodes TFTs are higher than that of Ti electrodes TFTs’, while the and VTH of Al electrodes TFTs are lower than that of Ti electrodes TFTs’. The failure of the Ta electrodes is possibly due to the degradation of the properties of metal electrodes during its fabrication process, and the non-ohmic Ni/ZnO also leads to the failure of its TFT electrical properties.

    目錄 第1章 緒論 1 1-1 前言 1 1-2 研究目的與動機 3 第2章 理論基礎 4 2-1 電晶體元件(TFT) 4 2-2 金屬-半導體接面 6 2-3 氧化鋅材料及其金屬接面特性 12 2-3.1 氧化鋅(ZnO) 晶體結構及特性 12 2-3.2 n-型氧化鋅接面 13 2-3.3 p-型氧化鋅接面 14 2-4 特徵接觸電阻 16 2-4.1 特徵接觸電阻定義 16 2-4.2 特徵接觸電阻量測原理(TLM) 16 2-4.3 特徵接觸電阻量測方法(TLM): 18 第3章 實驗方法與步驟 20 3-1 實驗材料 20 3-1.1 濺鍍靶材(Sputtering Target) 20 3-1.2 蒸鍍源(Evaporation Sources) 20 3-1.3 基材(Substrates) 20 3-1.4 使用氣體(Gas Ambient) 20 3-2 實驗流程 21 3-2.1 二氧化矽薄膜製備 23 3-2.2 氧化鋅薄膜製備 24 3-2.3 金屬電極之製備 24 3-3 TFT 元件結構及TLM結構設計 26 3-4 分析儀器 30 3-4.1 表面粗度儀(Alpha-Step Profilometer) 30 3-4.2 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 30 3-4.3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 31 3-4.4 X光繞射儀 (X-ray Diffractometer, XRD) 31 3-4.5 拉賽福背向散射分析儀(Rutherford Backscattering Spectrometer, RBS) 32 3-4.6 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 32 3-4.7 紫外光-可見光光學儀(UV-visible Spectrometer) 33 3-4.8 原子力顯微鏡(Atomic Force Microscopy, AFM) 33 3-4.9 薄膜導電性質量測-四點探針量測(4-Point Probe Measurement) 34 3-4.10 TFT電性量測 35 第4章 結果與討論 36 4-1 氧化鋅層材料分析 36 4-1.1 氧化鋅結構分析 36 4-1.2 氧化鋅成分分析 39 4-1.3 試片截面及表面觀察與分析 42 4-1.4 氧化鋅光學性質分析 50 4-2 金屬電極特性分析 55 4-2.1 XPS縱深分析 55 4-2.2 金屬電極導電性量測 60 4-3 TLM接觸電阻量測 63 4-3.1 實際金屬電極大小量測 63 4-3.2 接觸電阻量測結果 64 4-4 TFT元件性質量測結果 70 4-4.1 薄膜電晶體元件各主要電性參數之定義與數據之取法 70 4-4.2 不同金屬TFT元件電性各別解析 ID-VD , ID-VG 73 4-4.3 相同金屬電極,於不同通道長度TFT元件之電性 81 4-4.4 不同金屬電極,於相同通道設計TFT元件之電性比較分析 93 4-5 TFT元件之電容-電壓(C-V)量測 100 4-6 TFT元件特性之討論 103 4-6.1 飽和移動率( )隨傳輸通道長度縮小而上升 103 4-6.2 飽和電流值(ID,Sat.)隨傳輸通道長度縮小而上升 103 4-6.3 起始電壓值(VTH)隨傳輸通道長度縮小而下降 103 4-6.4 開關(On/Off)比隨傳輸通道長度縮小而上升 103 4-6.5 W/L固定時,比較飽和電流值(ID,Sat.): Al>Ti 104 4-6.6 W/L固定時,比較開關(On/Off)比: Al Ti 104 4-6.7 W/L固定時,比較飽和移動率( ): Ti>Al 104 4-6.8 W/L固定時,比較起始電壓值(VTH): Ti>Al 105 第5章 總結 106 第6章 參考文獻 107 表目錄 Table 1 1不同氧化鋅薄膜電晶體製程與其金屬-半導體之接觸電阻值關係。 2 Table 2 1 金屬-半導體接合型態與功函數數值之關係表。 6 Table 2 2 氧化鋅歐姆接觸製程以及其特徵接觸電阻回顧。 13 Table 2 3 氧化鋅蕭特基接觸之能障高度及理想因子與回顧。 14 Table 2 4 經退火600oC之Au及Au/Ni/Au與p-ZnMgO接觸後所量得之片電阻,傳輸長度,以及特徵接觸電阻值。 15 Table 4 1利用RBS圖譜中各元素訊號峰的積分面積經過計算後之ZnO薄膜成份比例。 40 Table 4 2 溫度為25oC時,各金屬元素形成氧化物所需之生成自由能表。 57 Table 4 3 常溫下,四點探針量測金屬電極於氧化鋅薄膜上之電阻率。 62 Table 4 4 不銹鋼遮罩與製作完成之Al, Ti, Ta, Ni四種金屬電極間距。 63 Table 4 5 以鋁金屬為電極之薄膜電晶體電性整理(Mask- )。 81 Table 4 6 以鈦金屬為電極之薄膜電晶體電性整理(Mask- )。 84 Table 4 7 以鋁金屬為電極之薄膜電晶體電性整理(Mask- )。 87 Table 4 8 以鈦金屬為電極之薄膜電晶體電性整理(Mask- )。 90 Table 4 9 固定W/L時,鋁與鈦金屬作為電極之TFT電性比較整理(Mask- )。 94 圖目錄 Fig. 2 1閘極/SiNx/非晶矽之截面位能示意圖。於閘極所施加的正偏壓可在非晶矽層誘發出 之電荷,此電荷分布在帶尾能態(Tail states)與深階能態 (Deep states)。 5 Fig. 2 2 鋁金屬與氧化鋅薄膜(a)接合前, (b)接合後之能帶圖。 8 Fig. 2 3 鈦金屬與氧化鋅薄膜(a)接合前, (b)接合後之能帶圖。 9 Fig. 2 4 鉭金屬與氧化鋅薄膜(a)接合前, (b)接合後之能帶圖。 10 Fig. 2 5 鎳金屬與氧化鋅薄膜(a)接合前, (b)接合後之能帶圖。 11 Fig. 2 6 ZnO之晶格結構(Hexagonal Wurzite 之六角柱狀結構)。 12 Fig. 2 7 傳輸線模型(TLM)之量測試片俯視圖。 17 Fig. 2 8 TLM 量測側面示意圖。 19 Fig. 2 9 TLM量測迴路總電阻值對金屬電極間距作圖。 19 Fig. 3 1薄膜電晶體(TFT)元件、接觸電阻量測(TLM)及材料分析之實驗流程圖。 22 Fig. 3 2 本研究所製作之ZnO-TFT剖面示意圖。 23 Fig. 3 3 本實驗所製備之薄膜電晶體(TFT)之電極設計示意圖。 27 Fig. 3 4 本實驗所製備之接觸電阻量測試片(TLM法)之電極設計示意圖。 28 Fig. 3 5 本實驗所製備之定義氧化鋅薄膜區域之不銹鋼遮罩設計示意圖。 29 Fig. 3 6 本實驗所製備之定義金屬電極區域之不銹鋼遮罩設計示意圖。 29 Fig. 4 1 本實驗所製備之TFT元件及TLM試片氧化鋅薄膜(50 nm)之 X光繞射圖。 38 Fig. 4 2 本實驗所製備之TFT元件及TLM試片氧化鋅薄膜(50 nm)之低掠角X光繞射圖。 38 Fig. 4 3 本實驗不同厚度ZnO之GIAXRD圖。 39 Fig. 4 4 濺鍍時間為十分鐘(50nm)之氧化鋅薄膜鍍在碳基板上之RBS圖譜。 41 Fig. 4 5 Al/ZnO界面之HRTEM影像圖。 44 Fig. 4 6 Ti/ZnO界面之HRTEM影像圖。 44 Fig. 4 7 Ta/ZnO界面之HRTEM影像圖。 45 Fig. 4 8 Ni/ZnO界面之HRTEM影像圖。 45 Fig. 4 9 ZnO/SiO2界面之HRTEM影像圖。 46 Fig. 4 10 氧化鋅薄膜之TEM顯微影像 (a)放大倍率: 一百五十萬倍。(b)放大倍率: 八百萬倍。 47 Fig. 4 11 氧化鋅薄膜50nm之TEM繞射圖。 47 Fig. 4 12 本實驗所使用之500 nm厚二氧化矽AFM影像圖。 49 Fig. 4 13 本實驗所製備之50 nm 氧化鋅薄膜AFM表面影像圖。 49 Fig. 4 14 50nm厚氧化鋅薄膜於玻璃基板上之UV-vis穿透率光譜圖。 51 Fig. 4 15 50nm厚氧化鋅薄膜於石英玻璃上之UV-vis穿透率光譜圖。 51 Fig. 4 16 不同厚度氧化鋅薄膜於玻璃基板上之UV-vis穿透率光譜圖。 52 Fig. 4 17 扣除玻璃基板之不同厚度氧化鋅薄膜之UV-vis穿透率光譜圖。 52 Fig. 4 18 厚度50nm氧化鋅之Eg計算。 54 Fig. 4 19 厚度500nm氧化鋅之Eg計算。 54 Fig. 4 20 以鋁為金屬層之試片結構為Al(20nm)/ZnO(50nm)/SiO2(500nm)/Si,其Al 2p核層電子束縛能之XPS縱深光電子能譜。 58 Fig. 4 21以鈦為金屬層之試片結構為Ti (20nm)/ZnO(50nm)/SiO2(500nm)/Si,其Ti 2p3/2核層電子束縛能之XPS縱深光電子能譜。 58 Fig. 4 22以鉭為金屬層之試片結構為Ta(20nm)/ZnO(50nm)/SiO2(500nm)/Si,其Ta 4f核層電子束縛能之XPS縱深光電子能譜。 59 Fig. 4 23以鎳為金屬層之試片結構為Ni(20nm)/ZnO(50nm)/SiO2(500nm)/Si,其Ni 2p 3/2核層電子束縛能之XPS縱深光電子能譜。 59 Fig. 4 24以鈦為金屬層之試片結構為Ti (20nm)/ZnO(50nm)/SiO2(500nm)/Si,其Ti 2p 3/2核層電子束縛能之XPS縱深光電子之最表面訊號能譜。 60 Fig. 4 25 以鋁金屬做為電極之TLM量測之電流-電壓關係圖。 66 Fig. 4 26 以TLM法計算鋁金屬做為電極之金屬-半導體接觸電阻之總電阻值-電極間距關係圖。 66 Fig. 4 27 以鈦金屬做為電極之TLM量測之電流-電壓關係圖。 67 Fig. 4 28 以TLM法計算鈦金屬做為電極之金屬-半導體接觸電阻之總電阻值-電極間距關係圖。 67 Fig. 4 29 以鉭金屬做為電極之TLM量測之電流-電壓關係圖。 68 Fig. 4 30 以TLM法計算鉭金屬做為電極之金屬-半導體接觸電阻之總電阻值-電極間距關係圖。 68 Fig. 4 31以鎳金屬做為電極之TLM量測之電流-電壓關係圖。 69 Fig. 4 32 當 從-20V增加到30V,其開關電流比為最大的飽和電流(ID,on)除以漏電流(ID,off)之比。 71 Fig. 4 33 本實驗以鋁作為電極之TFT, 由-40V到40V所得之 圖。 71 Fig. 4 34 當 時, 與 分別對 作圖之TFT轉換特性圖,此薄膜電晶體之開關(On/Off)比為105且臨界電壓(VTH)為2.5V。 72 Fig. 4 35 當W/L=1000/100時,以鋁金屬作為電極之TFT的ID-VD圖。 74 Fig. 4 36 當W/L=1000/100時,以鋁金屬作為電極之TFT的ID-VGS圖。 74 Fig. 4 37 當W/L=1000/100時,以鋁金屬作為電極之TFT的ID1/2-VGS圖。 75 Fig. 4 38 當W/L=1000/100時,以鈦金屬作為電極之TFT的ID-VD圖。 76 Fig. 4 39 當W/L=1000/100時,以鈦金屬作為電極之TFT的ID-VGS圖。 77 Fig. 4 40 當W/L=1000/100時,以鈦金屬作為電極之TFT的ID1/2-VGS圖。 77 Fig. 4 41 當W/L=200/150時,以鉭金屬作為電極之TFT的ID-VD圖。 78 Fig. 4 42 當W/L=200/150時,以鉭金屬作為電極之TFT的ID-VGS圖。 79 Fig. 4 43 當W/L=200/150時,以鉭金屬作為電極之TFT的ID1/2-VGS圖。 79 Fig. 4 44 當W/L=1500/100時,以鎳金屬作為電極之TFT的ID-VD圖。 80 Fig. 4 45 當W/L=1500/100時,以鎳金屬作為電極之TFT的ID-VGS圖。 80 Fig. 4 46 Mask- 中以鋁為金屬電極之TFT飽和移動率隨電極間距變化趨勢圖。 82 Fig. 4 47 Mask- 中以鋁為金屬電極之TFT飽和電流值隨電極間距變化趨勢圖。 82 Fig. 4 48 Mask- 中以鋁為金屬電極之TFT起始電壓值隨電極間距變化趨勢圖。 83 Fig. 4 49 Mask- 中以鋁為金屬電極之TFT開關比隨電極間距變化趨勢圖。 83 Fig. 4 50 Mask- 中以鈦為金屬電極之TFT飽和移動率隨電極間距變化趨勢圖。 85 Fig. 4 51 Mask- 中以鈦為金屬電極之TFT飽和電流值隨電極間距變化趨勢圖。 85 Fig. 4 52 Mask- 中以鈦為金屬電極之TFT起始電壓值隨電極間距變化趨勢圖。 86 Fig. 4 53 Mask- 中以鈦為金屬電極之TFT開關比隨電極間距變化趨勢圖。 86 Fig. 4 54 Mask- 中以鋁為金屬電極之TFT飽和移動率隨電極間距變化趨勢圖。 88 Fig. 4 55 Mask- 中以鋁為金屬電極之TFT飽和電流值隨電極間距變化趨勢圖。 88 Fig. 4 56 Mask- 中以鋁為金屬電極之TFT起始電壓值隨電極間距變化趨勢圖。 89 Fig. 4 57 Mask- 中以鈦為金屬電極之TFT飽和移動率隨電極間距變化趨勢圖。 91 Fig. 4 58 Mask- 中以鈦為金屬電極之TFT飽和電流值隨電極間距變化趨勢圖。 91 Fig. 4 59 Mask- 中以鈦為金屬電極之TFT啟始電壓隨電極間距變化趨勢圖。 92 Fig. 4 60 Mask- 中, 時,鋁與鈦金屬作為電極之TFT飽和移動率隨電極間距變化之趨勢比較圖。 95 Fig. 4 61 Mask- 中, 時,鋁與鈦金屬作為電極之TFT飽和電流值隨電極間距變化之趨勢比較圖。 95 Fig. 4 62 Mask- 中, 時,鋁與鈦金屬作為電極之TFT起始電壓值隨電極間距變化之趨勢比較圖。 96 Fig. 4 63 在Mask- 中,不同金屬作為電極之TFT飽和移動率隨W/L值變化之趨勢比較圖。 97 Fig. 4 64 在Mask- 中,不同金屬作為電極之TFT飽和電流值隨W/L值變化之趨勢比較圖。 98 Fig. 4 65 在Mask- 中,不同金屬作為電極之TFT起始電壓隨W/L值變化之趨勢比較圖。 98 Fig. 4 66 在Mask- 中,不同金屬作為電極之TFT開關比隨W/L值變化之趨勢比較圖。 99 Fig. 4 67 試片結構為Si/SiO2/ZnO/Al之C-V曲線 102 Fig. 4 68 試片結構為Si/SiO2/ZnO/Ti之C-V曲線 102

    1 Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin,
    S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98, 041301 (2005)
    2 A. Inumpudi, A. A. Iliadis, S. Krishnamoorthy, S. Choopun, R. D. Vispute, T. Venkatesan, Pt-Ga Ohmic contacts to n-ZnO using focused ion beams, Solid-State Electronics 46, 1665 (2002)
    3 S. Y. Kim, H. W. Jang, J. K. Kim, C. M. Jeon, W. I. Park, G. C. Yi, J.-L. Lee, Low-Resistance Ti/Al Ohmic Contact on Undoped ZnO, J. Electronic Materials 31, 868 (2002)
    4 H. Sheng, N.W. Emanetoglu, S. Muthukumar, B.V. Yakshinskiy, S. Feng, Y. Lu, Ta/Au Ohmic Contacts to n-Type ZnO, J. of Electronic Materials 32, 935 (2003)
    5 T. Akane, K. Sugioka, K. Midorikawa, Nonalloy Ohmic contact fabrication in a hydrothermally grown n-ZnO (0001) substrate by KrF excimer laser irradiation, J. Vac. Sci. Technol. B. 18, 1406 (2000)
    6 H. K. Kim, S. H. Han, T. Y. Seong, W. K. Choi, Low-resistance Ti/Au ohmic contacts to Al-doped ZnO layers, Appl. Phys. Lett. 77, 1647 (2000)
    7 H. K. Kim, S. H. Han, T. Y. Seong, W. K. Choi, Electrical and Structural Properties of Ti/Au Ohmic Contacts to n-ZnO, J. Electrochem. Soc. 148, G114 (2001)
    8 H. K. Kim, K. K. Kim, S. J. Park, T.-Y. Seong, I. Adesida, Formation of low resistance nonalloyed Al/Pt ohmic contacts on n-type ZnO epitaxial layer, J. Appl. Phys. 94, 4225 (2003)
    9 J. M. Lee, K. K. Kim, S. J. Park, W.-K. Choi, Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO, Appl. Phys. Lett. 78, 3842 (2001)
    10 H. K. Kim, J. M. Lee, Low resistance nonalloyed Al-based ohmic contacts on n-ZnO: Al, Superlattices and Microstructures. 42, 255 (2007)
    11 H. K. Kim, I. Adesida, K. K. Kim, S. J. Park, T. Y. Seong, Study of the Electrical and Structural Characteristics of Al/Pt Ohmic Contacts on n-Type ZnO Epitaxial Layer, J. Electrochem. Soc. 151, G223 (2004)
    12 K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, F. Ren, Carrier concentration dependence of Ti/Al/Pt/Au contact resistance on n-type ZnO, Appl. Phys. Lett. 84, 544 (2004)
    13 H. Sheng, N.W. Emanetoglu, S.Muthukumar, S. Feng, Y. Lu, Nonalloyed Al Ohmic Contacts to MgxZn1-xO, J. Electronic Materials 31, 811 (2002)
    14 H. S. Yang, D. P. Norton, S. J. Pearton, F. Ren, Ti/Au n-type Ohmic contacts to bulk ZnO substrates, Appl. Phys. Lett. 87, 212106 (2005)
    15 R. A. Rabadanov, M. K. Guseikhanov, I. S. Aliev, S. A. Semiletov, Properties of Metal- Zinc Oxide Contacts, Russian Physics Journal, 24, 548 (1981)
    16 K. Lee, J. H. Kim, S. Im, Probing the work function of a gate metal with a top-gate ZnO-thin-film transistor with a polymer dielectrics, Appl. Phys. Lett. 88, 023504 (2006)
    17 P. Barquinha, A. M. Vilà, G. Gonçalves, L. Pereira, R. Martins, J. R. Morante, E. Fortunato , Gallium–Indium–Zinc-Oxide-Based Thin-Film Transistors: Influence of the Source/Drain Material, IEEE Trans. Electron Device. 55, 954 (2008)
    18 H. H. Hsieh, C. C. Wu, Scaling Behavior of ZnO Transparent Thin Film Transistors, Appl. Phys. Lett. 89, 041109 (2006)
    19 J. Kanicki, Amorphous and Microcrystalline Semiconductor Devices Volume : Materials and Device Physics, ARTECH House, Inc. (1992) p. 409
    20 R. A. Street , Thin-Film Transistors, Advanced Materials, 21, 2016 (2009)
    21 D. A. Neaman, Semiconductor Physics and Device : Basic Principles, 3rded. (McGraw-Hill, New York, 2003) p.344.
    22 莊達人,“VLSI製造技術”,高立圖書有限公司. (2002) p.59
    23 J. Robertson, O. Sharia, A. A. Demkov, Fermi level pinning by defects in HfO2-metal gate stacks, Appl. Phys. Lett. 91, 132912 (2007)
    24 K. B. Sundaram, A. Khan, Work Function Determination of Zinc Oxide Films, J. Vac. Sci. Technol. A.15, 428 (1997)
    25 G. Neumann, On the Defect Structure of Zinc-Doped Zinc Oxide, Physica Status Solidi (b)105, 605 (1981)
    26 D. J. Leary, J. O. Barnes, A. G. Jordan, Calculation of Carrier Concentration in Polycrystalline Films as a Function of Surface Acceptor State Density: Application for ZnO Gas Sensors, J. Electrochem. Soc. 129, 1382 (1982)
    27 K. Ip, G. T. Thaler, H. Yang, S. Y. Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, F. Ren, Contacts to ZnO, J. Cryst. Growth. 287, 149 (2006)
    28 H.-K. Kim, T.-Y. Seong, K.-K. Kim, S.-J. Park, Y.S. Yoon, I. Adesida, Mechanism of Nonalloyed Al Ohmic Contacts to n-Type ZnO:Al Epitaxial Layer, Jpn. J. Appl. Phys. 43, 976 (2004)
    29 J.-H. Lim, K.-K. Kim, D.-K. Hwang, H.-S. Kim, J.-Y. Oh, S.-J. Park, Ni/Au Ohmic Contacts to p-Type N-Doped ZnO, J Electrochem. Soc. 152, G179 (2005)
    30 S. Kim, B. S. Kang, F. Ren, Y. W. Heo, K. Ip, D. P. Norton, S. J. Pearton, Contacts to p-type ZnMgO, Appl. Phys. Lett. 84, 1904 (2004)
    31 H. S. Yang, Y. Li, D. P. Norton, K. Ip, S. J. Pearton, S. Jang, F. Ren, Low-resistance ohmic contacts to p-ZnMgO grown by pulsed-laser Deposition, Appl. Phys. Lett. 86, 192103 (2005)
    32 D. K. Schroder, Semiconductor Material and Device Characterization, New York, NY: John Wiley & Sons, Inc. (1990) Chap. 3
    33 H. Murrmann, D. Widmann, Current Crowding on Metal Contacts to Planar Devices, IEEE International Solid-State Circuts Conference. 162 (1969)
    34 G. K. Reeves, H. B. Harrison, Obtaining the Specific Contact Resistance from Transmission Line Model Measurements, IEEE Electron Dev. Lett. EDL-3, 111 (1982)
    35 S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley (1981) p. 32
    36 A. Piotrowska, A. Guivarch, G. Pelous, Ohmic Contacts to III-V Compound Semiconductors: A Review of Fabrication Techniques, Solid-State Electronics 26,
    179 (1983)
    37 B. L. Sharma, Ohmic contacts to III-V compound semiconductors, in Semiconductors and Semimetals, Volume 15, p. 1-38., R. K. Willardson and A. C. Beer, Eds. New York: Academic Press Inc. (1981)
    38 S. S. Cohen, G. S. Gildenblat, Metal-Semiconductor Contacts and Devices, in VLSI Electronic Microstructure Science, Volume 13, p.434., Academic Press Inc. (1986)
    39 D. M. Brown, M Ghezzo, J. M. Pimbley, Trends in Advanced Process Technology-Submicrometer CMOS Device Design and Process Requirements, Proceedings of the IEEE 74, 1678 (1986)
    40 S. Takada, Relation between optical property and crystallinity of ZnO thin films prepared by rf magnetron sputtering, J. Appl. Phys. 73, 4739. (1993)
    41 N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, Control of preferred orientation for ZnOx films: control of self-texture, J. Cryst. Growth. 130, 269 (1993)
    42 M. Grȁtzel, Heterogenenous Photochemical Electron Transfer, CRC Press.(1989) p.91
    43 N. Serpone, D. Lawless, R. Khairutdinov, Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization or Direct Transitions in This Indirect Semiconductor?, J. Phys. Chem. 99, 16646 (1995)
    44 Burstein , Anomalous Optical Absorption Limit in InSb, Phys. Rev. 93, 455 (1954)
    45 L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, A. Deepthy, B Krishnan, Size Dependent Fluorescence Spectroscopy of Nanocolloids of ZnO, J. Appl. Phys. 102, 063524 (2007)
    46 J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, edited by J. Chastain and R. C. King (1995)
    47 J. Emsley, The Elements, Oxford University Press, (New York, 1989)
    48 C. R. Kagan, P. W. E. Andry, Thin Film Transistors, (Marcel Dekker, New York , 2003) p.320
    49 R. L. Hoffman, B. J. Norris, J. F. Wager, ZnO-based transparent thin-film transistors, Appl. Phys. Lett. 82, 733 (2003)
    50 R. Navamathavan, E.-J.Yang, J.-H. Lim, D.-K. Hwang, J.-Y. Oh, J.-H. Yang, J.-H. Jang, S.-J. Parka, Effects of Electrical Bias Stress on the Performance of ZnO-Based TFTs Fabricated by RF Magnetron Sputtering, J. Electrochem. Soc. 153, G385(2006)
    51 B.-Y. Oh, M.-C. Jeong, M.-H. Ham, J.-M. Myoung, Effects of the channel thickness on the structural and electrical characteristics of room-temperature fabricated ZnO thin-film transistors, Semicond. Sci. Technol. 22, 608 (2007)
    52 S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, Transparent thin film transistors using ZnO as an active channel layer and their electrical properties, J. Appl. Phys. 93, 1624 (2003)
    53 L. Zhang, H. Zhang, Y. Bai, J. W. Ma, J. Cao, X. Y. Jiang, Z. L. Zhang, Enhanced performances of ZnO-TFT by improving surface properties of channel layer, Solid State Communications 146, 387 (2008)
    54 C-C Wu, H-H Hsieh, Scaling and parasitic effects in ZnO transparent thin film transistors, Zinc Oxide Materials and Devices II edited by Ferechteh Hosseini Teherani, Cole W. Litton, Proc. of SPIE Vol. 6474, 647419, (2007)
    55 D. W. Greve, Field-Effect Devices and Applications, (1998) p. 263.
    56 G. Baccarani, B. Ricco, G. Spadini, Transport properties of polycrystalline silicon films, J. Appl. Phys. 49, 5565 (1978)
    57 A. C. Tickle, Thin-Film Tansistors A New Approach to Microelectronics, John Wiley & Sons, Inc. (1969) p.33
    58 D. Natali, L. Fumagalli, M. Sampietro, Modeling Of Organic Thin Film Transistors : Effect Of Contact Resistance, J. Appl. Phys. 101, 014501 (2007)
    59 C.-H. Lee, A. Sazonov, A. Nathan, High hole and electron mobilities in nanocrystalline silicon thin-film transistors, J. Non-Cryst. Solids 352, 1732 (2006)
    60 R. Hattori, J. Kanicki, Contact Resistance in Schottky Contact Gated-Four-Probe a-Si Thin-Film Transistor, Jpn. J. Appl. Phys. 42, 907 (2003)
    61 J. K. Jeong, H.-J. Chung, Y.-G. Mo, H. D. Kim, Comprehensive Study on the Transport Mechanism of Amorphous Indium-Gallium-Zinc Oxide Transistors, J. Electrochem. Soc. 155, 873 (2008)

    無法下載圖示 校內:2039-09-09公開
    校外:2039-09-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE