| 研究生: |
林玟伶 Lin, Wen-Ling |
|---|---|
| 論文名稱: |
基於雙金屬原子位點伽凡尼置換於共價有機框架奈米酶增強催化循環之葡萄糖氧化與ROS/RHS生成之協同腫瘤治療 Galvanic Replacement Engineered Covalent Organic Frameworks Nanozyme with Dual Metal Atomic Sites for Enhanced Catalytic Cycle Glucose Oxidation and ROS/RHS Generation in Synergistic Tumor Treatment |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 雙原子催化劑 、共價有機框架 、伽凡尼置換反應 、葡萄糖氧化酶 、過氧化氫酶 、鹵素過氧化物酶 |
| 外文關鍵詞: | dual-atom catalyst, covalent organic framework, galvanic replacement, glucose oxidase, catalase, haloperoxidase |
| 相關次數: | 點閱:58 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癌症仍是全球主要死因之一,而現有治療方式如手術、化療與放療常伴隨副作用大、復發率高等問題。因此,開發具選擇性且高效的治療策略成為當前研究的重要方向。腫瘤微環境中葡萄糖代謝旺盛,且富含內源性過氧化氫 (H2O2) 與氯離子 (Cl⁻),為催化治療提供了理想條件。基於此,本研究旨在設計一種能精準利用腫瘤內源代謝物,並促進協同催化以增強ROS與RHS產生的創新治療策略。
我們開發了一種基於共價有機框架 (Covalent Organic Frameworks, COFs) 的創新催化治療平台,透過伽凡尼置換反應 (Galvanic replacement reaction) 以及乙醇還原法,將金 (Au) 與銥 (Ir) 原子整合於COF骨架中,構築出COF/Aux/Ir1–x雙原子催化系統,並於表面包覆透明質酸 (Hyaluronic acid, HA) 以提升其生物相容性及靶向性。
此雙金屬單原子結構 (COF/Au0.75/Ir0.25 NPs) 可促進高效的協同催化循環,有效促進葡萄糖氧化與活性氧物種 (Reactive Oxygen Species, ROS) 及活性鹵素物種 (Reactive Halogen Species, RHS) 的產生,其中Au催化葡萄糖氧化生成葡萄糖酸與過氧化氫 (H2O2),而Ir則負責將 H2O2 分解為超氧陰離子 (Superoxide, O2•⁻),並於氯離子 (Cl⁻) 存在下產生次氯酸 (HOCl)。雙原子催化位點進一步驅動正回饋循環,使H2O2 持續轉化為氧氣 (O2),使氧氣再次回到Au催化葡萄糖氧化的過程,增加後續ROS 與 RHS 在腫瘤細胞內的累積,顯著提升催化治療的效率。
最後在細胞實驗與動物模型中,COF/Au0.75/Ir0.25 NPs 不僅顯示出卓越的腫瘤抑制效果,亦對主要正常器官無明顯毒性損害,展現良好的生物相容性與安全性。綜合上述成果,本研究成功建立一種由腫瘤內源性代謝物驅動,具高度選擇性與治療效率的協同腫瘤治療策略。
A novel catalytic therapy platform based on Covalent Organic Frameworks (COFs) with dual-atom metal sites is developed to enhance selectivity and efficiency in cancer treatment. Leveraging the tumor microenvironment—rich in glucose, hydrogen peroxide (H2O2), and chloride ions (Cl⁻)—the system enables synergistic catalysis to boost reactive oxygen species (ROS) and reactive halogen species (RHS) generation. Gold (Au) and iridium (Ir) atoms are incorporated into the COF framework via galvanic replacement, forming COF/Aux/Ir1–x dual-atom catalysts. To improve biocompatibility and tumor targeting, the surface is further coated with hyaluronic acid (HA), which recognizes CD44 receptors overexpressed on cancer cells. In this system, Au catalyzes glucose oxidation to generate gluconic acid and H2O2, while Ir decomposes H2O2 into superoxide (O2•⁻) and produces hypochlorous acid (HOCl) in the presence of Cl⁻. Dual-atom catalytic sites initiate a positive feedback loop, continuously converting H2O2 into oxygen (O2), accelerating ROS and RHS accumulation in tumor cells. By fine-tuning the Au:Ir ratio, optimal catalytic performance and therapeutic efficiency are achieved. This strategy offers a selective, metabolism-driven approach for effective cancer treatment.
1. Li, Y.; Fu, B.; Jiang, W. Emerging Roles of Nanozyme in Tumor Metabolism Regulation: Mechanisms, Applications, and Future Directions. ACS Applied Materials & Interfaces 2025, 17(8), 11552-11577.
2. Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chemical Reviews 2019, 119(6), 4357-4412.
3. Chen, Y., et al. Inter-Metal Interaction of Dual-Atom Catalysts in Heterogeneous Catalysis. Angewandte Chemie International Edition 2023, 62(42), e202306469.
4. Wang, L., et al. Atomically Dispersed Dual Metal Sites Anchored Catalyst Enables Photothermally Augmented Catalytic Oxidation for Biocatalytic Tumor Therapy. Advanced Functional Materials 2024, 2423783.
5. Diercks, C.S.; Yaghi, O.M. The atom, the molecule, and the covalent organic framework. Science 2017, 355(6328), eaal1585.
6. Feng, X.; Ding, X.; Jiang, D. Covalent organic frameworks. Chemical Society Reviews 2012, 41(18), 6010-6022.
7. Fang, Q., et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nature Communications 2014, 5(1), 4503.
8. Abuzeid, H.R.; El-Mahdy, A.F.M.; Kuo, S.-W. Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications. Giant 2021, 6, 100054.
9. Wang, H., et al. Covalent organic framework photocatalysts: structures and applications. Chemical Society Reviews 2020, 49(12), 4135-4165.
10. Qiao, S., et al. Integration of Enzyme and Covalent Organic Frameworks: From Rational Design to Applications. Accounts of Chemical Research 2024, 57(1), 93-105.
11. Li, L.; Yuan, K.; Chen, Y. Breaking the Scaling Relationship Limit: From Single-Atom to Dual-Atom Catalysts. Accounts of Materials Research 2022, 3(6), 584-596.
12. Wu, Y.; Wang, R.; Kim, Y. Single-Atom Catalysts on Covalent Organic Frameworks for Energy Applications. ACS Applied Materials & Interfaces 2024, 16(49), 66874-66899.
13. Zhou, L.-L.; Guan, Q.; Dong, Y.-B. Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angewandte Chemie International Edition 2024, 63(8), e202314763.
14. Yang, J.; Yang, Y.-W. Metal–Organic Frameworks for Biomedical Applications. Small 2020, 16(10), 1906846.
15. Liu, Q., et al. Heterostructures Made of Upconversion Nanoparticles and Metal–Organic Frameworks for Biomedical Applications. Advanced Science 2022, 9(3), 2103911.
16. Cheng, G., et al. Precise design of dual active-site catalysts for synergistic catalytic therapy of tumors. Journal of Materials Chemistry B 2024, 12(6), 1512-1522.
17. Shi, Y., et al. Covalent Organic Frameworks: Recent Progress in Biomedical Applications. ACS Nano 2023, 17(3), 1879-1905.
18. Li, T., et al. Biodegradable covalent organic frameworks achieving tumor micro-environment responsive drug release and antitumor treatment. Biomaterials Science 2023, 11(19), 6524-6536.
19. Zhou, L., et al. Facile synthesis of covalent organic framework derived Fe-COFs composites as a peroxidase-mimicking artificial enzyme. Nanoscale Advances 2020, 2(3), 1036-1039.
20. Gao, P., et al. Pt nanozyme-bridged covalent organic framework-aptamer nanoplatform for tumor targeted self-strengthening photocatalytic therapy. Biomaterials 2023, 297, 122109.
21. Qiao, B., et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry 2011, 3(8), 634-641.
22. Weon, S., et al. Environmental Materials beyond and below the Nanoscale: Single-Atom Catalysts. ACS ES&T Engineering 2021, 1(2), 157-172.
23. Mitchell, S.; Vorobyeva, E.; Pérez-Ramírez, J. The Multifaceted Reactivity of Single-Atom Heterogeneous Catalysts. Angewandte Chemie International Edition 2018, 57(47), 15316-15329.
24. Hu, P., et al. Electronic Metal–Support Interactions in Single-Atom Catalysts. Angewandte Chemie International Edition 2014, 53(13), 3418-3421.
25. Peng, Y.; Lu, B.; Chen, S. Carbon-Supported Single Atom Catalysts for Electrochemical Energy Conversion and Storage. Advanced Materials 2018, 30(48), 1801995.
26. Zhou, Y., et al. Multilayer stabilization for fabricating high-loading single-atom catalysts. Nature Communications 2020, 11(1), 5892.
27. Daelman, N.; Capdevila-Cortada, M.; López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nature Materials 2019, 18(11), 1215-1221.
28. Li, Z., et al. Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chemical Reviews 2020, 120(2), 623-682.
29. Xi, J., et al. Synthesis Strategies, Catalytic Applications, and Performance Regulation of Single-Atom Catalysts. Advanced Functional Materials 2021, 31(12), 2008318.
30. Wang, Y.; Wang, D.; Li, Y. Rational Design of Single-Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. Advanced Materials 2021, 33(34), 2008151.
31. Rabouw, F.T.; de Mello Donega, C. Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Topics in Current Chemistry 2016, 374(5), 58.
32. Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews 2018, 118(10), 4981-5079.
33. Liu, G., et al. Recent advances of eco-friendly quantum dots light-emitting diodes for display. Progress in Quantum Electronics 2022, 86, 100415.
34. Lee, J., et al. Size-Controlled Electron Transfer and Photocatalytic Activity of ZnO–Au Nanoparticle Composites. The Journal of Physical Chemistry Letters 2011, 2(22), 2840-2845.
35. Yang, X.-F., et al. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research 2013, 46(8), 1740-1748.
36. Cheng, J., et al. Boosting Ferroptosis Therapy with Iridium Single-Atom Nanocatalyst in Ultralow Metal Content. Advanced Materials 2023, 35(17), 2210037.
37. Wang, Z., et al. Boosting Tumor Apoptosis and Ferroptosis with Multienzyme Mimetic Au Single-Atom Nanozymes Engaged in Cascade Catalysis. Advanced Functional Materials 2025, 35(2), 2412767.
38. Zhang, J., et al. Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chinese Journal of Catalysis 2020, 41(5), 783-798.
39. Choi, C.H., et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nature Communications 2016, 7(1), 10922.
40. Kunwar, D., et al. Stabilizing High Metal Loadings of Thermally Stable Platinum Single Atoms on an Industrial Catalyst Support. ACS Catalysis 2019, 9(5), 3978-3990.
41. Yang, S., et al. Use of Organic Precursors and Graphenes in the Controlled Synthesis of Carbon-Containing Nanomaterials for Energy Storage and Conversion. Accounts of Chemical Research 2013, 46(1), 116-128.
42. Zhang, W., et al. Emerging Dual-Atomic-Site Catalysts for Efficient Energy Catalysis. Advanced Materials 2021, 33(36), 2102576.
43. Ye, J., et al. Embedding Atomically Dispersed Manganese/Gadolinium Dual Sites in Oxygen Vacancy-Enriched Biodegradable Bimetallic Silicate Nanoplatform for Potentiating Catalytic Therapy. Advanced Science 2024, 11(4), 2307424.
44. Zhao, D., et al. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chemical Society Reviews 2020, 49(7), 2215-2264.
45. Fang, J., et al. The synthesis of single-atom catalysts for heterogeneous catalysis. Chemical Communications 2023, 59(20), 2854-2868.
46. Xia, X., et al. 25th Anniversary Article: Galvanic Replacement: A Simple and Versatile Route to Hollow Nanostructures with Tunable and Well-Controlled Properties. Advanced Materials 2013, 25(44), 6313-6333.
47. Wang, L.-C., et al. Atomically dispersed golds on degradable zero-valent copper nanocubes augment oxygen driven Fenton-like reaction for effective orthotopic tumor therapy. Nature Communications 2022, 13(1), 7772.
48. Li, S., et al. A Pt1Pd Single-Atom Alloy Nanozyme with Boosted Enzyme-Like Activity for Efficient Photo-Mediated Tumor Therapy. Small 2024, 20(21), 2309704.
49. He, W., et al. Single-Atom Nanozymes for Catalytic Therapy: Recent Advances and Challenges. Advanced Functional Materials 2024, 34(16), 2312116.
50. Manea, F., et al. Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts. Angewandte Chemie International Edition 2004, 43(45), 6165-6169.
51. Wang, H.; Wan, K.; Shi, X. Recent Advances in Nanozyme Research. Advanced Materials 2019, 31(45), 1805368.
52. Cai, X., et al. Nanozyme-involved biomimetic cascade catalysis for biomedical applications. Materials Today 2021, 44, 211-228.
53. Jiang, D., et al. Nanozyme: new horizons for responsive biomedical applications. Chemical Society Reviews 2019, 48(14), 3683-3704.
54. Gao, L., et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology 2007, 2(9), 577-583.
55. Liang, W., et al. Metal–Organic Framework-Based Enzyme Biocomposites. Chemical Reviews 2021, 121(3), 1077-1129.
56. Feng, Y., et al. Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coordination Chemistry Reviews 2022, 459, 214414.
57. Liu, Q., et al. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. Nano-Micro Letters 2021, 13(1), 154.
58. Sun, H., et al. Carbon Nanozymes: Enzymatic Properties, Catalytic Mechanism, and Applications. Angewandte Chemie International Edition 2018, 57(30), 9224-9237.
59. Liu, B., et al. Hydrogen Peroxide Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum. Journal of the American Chemical Society 2015, 137(3), 1290-1295.
60. Zhang, Z., et al. Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity. Journal of the American Chemical Society 2017, 139(15), 5412-5419.
61. Wang, H., et al. Correction to Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections. Nano Letters 2019, 19(12), 9173-9173.
62. Fan, K., et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nature Nanotechnology 2012, 7(7), 459-464.
63. Cai, Q., et al. Catalytic degradation of dye molecules and in situ SERS monitoring by peroxidase-like Au/CuS composite. Nanoscale 2014, 6(14), 8117-8123.
64. Cao, C., et al. Biomedicine meets nanozyme catalytic chemistry. Coordination Chemistry Reviews 2023, 491, 215245.
65. Bankar, S.B., et al. Glucose oxidase — An overview. Biotechnology Advances 2009, 27(4), 489-501.
66. Dinda, S.; Sarkar, S.; Das, P.K. Glucose oxidase mediated targeted cancer-starving therapy by biotinylated self-assembled vesicles. Chemical Communications 2018, 54(71), 9929-9932.
67. Jo, S.-M.; Wurm, F.R.; Landfester, K. Oncolytic Nanoreactors Producing Hydrogen Peroxide for Oxidative Cancer Therapy. Nano Letters 2020, 20(1), 526-533.
68. Li, J., et al. Polymer Prodrug-Based Nanoreactors Activated by Tumor Acidity for Orchestrated Oxidation/Chemotherapy. Nano Letters 2017, 17(11), 6983-6990.
69. Ma, Y., et al. Nanoclustered Cascaded Enzymes for Targeted Tumor Starvation and Deoxygenation-Activated Chemotherapy without Systemic Toxicity. ACS Nano 2019, 13(8), 8890-8902.
70. Yu, S., et al. Advances in nanomedicine for cancer starvation therapy. Theranostics 2019, 9(26), 8026-8047.
71. Zhang, J., et al. Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science 2007, 315(5809), 220-222.
72. Luo, W., et al. Self-Catalyzed, Self-Limiting Growth of Glucose Oxidase-Mimicking Gold Nanoparticles. ACS Nano 2010, 4(12), 7451-7458.
73. Zhao, W.; Brook, M.A.; Li, Y. Design of Gold Nanoparticle-Based Colorimetric Biosensing Assays. ChemBioChem 2008, 9(15), 2363-2371.
74. Rosi, N.L.; Mirkin, C.A. Nanostructures in Biodiagnostics. Chemical Reviews 2005, 105(4), 1547-1562.
75. Comotti, M., et al. The Catalytic Activity of “Naked” Gold Particles. Angewandte Chemie International Edition 2004, 43(43), 5812-5815.
76. Pezhhan, H.; Akhond, M.; Shamsipur, M. Histidine capped-gold nanoclusters mediated fluorescence detection of glucose and hydrogen peroxide based on glucose oxidase-mimicking property of gold nanoparticles via an inner filter effect mechanism. Journal of Luminescence 2020, 228, 117604.
77. Zeng, X., et al. Biocatalytic cascade in tumor microenvironment with a Fe2O3/Au hybrid nanozyme for synergistic treatment of triple negative breast cancer. Chemical Engineering Journal 2023, 452, 138422.
78. Yang, N., et al. Hypoxia-responsive nanoparticles for tumor-specific starvation therapy via a two-pronged approach. Chemical Engineering Journal 2024, 485, 150133.
79. Zhang, W., et al. Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers. Journal of the American Chemical Society 2016, 138(18), 5860-5865.
80. Huang, Y., et al. A GO–Se nanocomposite as an antioxidant nanozyme for cytoprotection. Chemical Communications 2017, 53(21), 3082-3085.
81. Vernekar, A.A., et al. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nature Communications 2014, 5(1), 5301.
82. Natalio, F., et al. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nature Nanotechnology 2012, 7(8), 530-535.
83. Ragg, R.; Tahir, M.N.; Tremel, W. Solids Go Bio: Inorganic Nanoparticles as Enzyme Mimics. European Journal of Inorganic Chemistry 2016, 2016(13-14), 1906-1915.
84. Cao, S., et al. A Library of ROS-Catalytic Metalloenzyme Mimics with Atomic Metal Centers. Advanced Materials 2022, 34(16), 2200255.
85. Long, Y., et al. Hedgehog artificial macrophage with atomic-catalytic centers to combat Drug-resistant bacteria. Nature Communications 2021, 12(1), 6143.
86. Meng, X., et al. Ultrasmall metal alloy nanozymes mimicking neutrophil enzymatic cascades for tumor catalytic therapy. Nature Communications 2024, 15(1), 1626.
87. Xu, D., et al. Catalase-Like Nanozymes: Classification, Catalytic Mechanisms, and Their Applications. Small 2022, 18(37), 2203400.
88. Xiong, B., et al. Preventing UV induced cell damage by scavenging reactive oxygen species with enzyme-mimic Au–Pt nanocomposites. Talanta 2014, 120, 262-267.
89. Shen, X., et al. Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold, Silver, Platinum, and Palladium, and Their Alloys: A General Way to the Activation of Molecular Oxygen. Journal of the American Chemical Society 2015, 137(50), 15882-15891.
90. Lien, C.-W., et al. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions. Nanoscale 2013, 5(17), 8227-8234.
91. Kwon, H.J., et al. Ceria Nanoparticle Systems for Selective Scavenging of Mitochondrial, Intracellular, and Extracellular Reactive Oxygen Species in Parkinson's Disease. Angewandte Chemie International Edition 2018, 57(30), 9408-9412.
92. Wang, D., et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nature Communications 2020, 11(1), 357.
93. Wang, H., et al. A dual-signal readout sensor for highly sensitive detection of iodide ions in urine based on catalase-like reaction of iodide ions and N-doped C-dots. Sensors and Actuators B: Chemical 2017, 250, 429-435.
94. Yan, R., et al. Nanozyme-Based Bandage with Single-Atom Catalysis for Brain Trauma. ACS Nano 2019, 13(10), 11552-11560.
95. Kundu, S.; Liang, H. Shape-selective formation and characterization of catalytically active iridium nanoparticles. Journal of Colloid and Interface Science 2011, 354(2), 597-606.
96. Li, J., et al. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Scientific Reports 2013, 3(1), 1998.
97. Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 2002, 298(5601), 2176-2179.
98. Tsunoyama, H., et al. Size-Specific Catalytic Activity of Polymer-Stabilized Gold Nanoclusters for Aerobic Alcohol Oxidation in Water. Journal of the American Chemical Society 2005, 127(26), 9374-9375.
99. Su, H., et al. Dual-Enzyme Characteristics of Polyvinylpyrrolidone-Capped Iridium Nanoparticles and Their Cellular Protective Effect against H2O2-Induced Oxidative Damage. ACS Applied Materials & Interfaces 2015, 7(15), 8233-8242.
100. Reyal, J. Arterial flow focalization could increase tissue oxygen partial pressure, or trigger endothelial shear stress – A new concept to overcome cancer hypoxia-induced radiotherapy resistance, or stimulate liver regeneration during fulminant hepatitis. Medical Hypotheses 2010, 74(2), 301-308.
101. Lismont, M.; Dreesen, L.; Wuttke, S. Metal-Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Advanced Functional Materials 2017, 27(14), 1606314.
102. He, Z., et al. A Catalase-Like Metal-Organic Framework Nanohybrid for O2-Evolving Synergistic Chemoradiotherapy. Angewandte Chemie International Edition 2019, 58(26), 8752-8756.
103. Reid, Y., et al. Establishment of a human neonatal hepatocyte cell line. In Vitro Cellular & Developmental Biology - Animal 2009, 45(9), 535-542.
104. Guan, Q.; Zhou, L.-L.; Dong, Y.-B. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chemical Society Reviews 2022, 51(15), 6307-6416.
105. Jati, A., et al. Dual Metalation in a Two-Dimensional Covalent Organic Framework for Photocatalytic C–N Cross-Coupling Reactions. Journal of the American Chemical Society 2022, 144(17), 7822-7833.
106. Wang, J., et al. Integrating Dual-Metal Sites into Covalent Organic Frameworks for Enhanced Photocatalytic CO2 Reduction. ACS Catalysis 2023, 13(7), 4316-4329.
107. Dong, X.-Y., et al. A benzimidazole-linked bimetallic phthalocyanine–porphyrin covalent organic framework synergistically promotes CO2 electroreduction. Journal of Materials Chemistry A 2023, 11(29), 15732-15738.
108. Arpicco, S.; De Rosa, G.; Fattal, E. Lipid-Based Nanovectors for Targeting of CD44-Overexpressing Tumor Cells. Journal of Drug Delivery 2013, 2013(1), 860780.
109. Zhang, R., et al. Hyaluronic acid-based prodrug nanomedicines for enhanced tumor targeting and therapy: A review. International Journal of Biological Macromolecules 2023, 249, 125993.
110. Zhou, L., et al. A Novel Photosynthetic Biohybrid System for Microenvironment Regulation of Diabetes Retinopathy through Continuous Oxygen Supply and Nanozyme Cascade Reaction. Advanced Functional Materials 2023, 33(44), 2302493.
111. Tampieri, F.; Ginebra, M.-P.; Canal, C. Quantification of Plasma-Produced Hydroxyl Radicals in Solution and their Dependence on the pH. Analytical Chemistry 2021, 93(8), 3666-3670.
112. Setsukinai, K.-i., et al. Development of Novel Fluorescence Probes That Can Reliably Detect Reactive Oxygen Species and Distinguish Specific Species*210. Journal of Biological Chemistry 2003, 278(5), 3170-3175.
113. Gotham, J.P., et al. Quantitation of spin probe-detectable oxidants in cells using electron paramagnetic resonance spectroscopy: To probe or to trap? Free Radical Biology and Medicine 2020, 154, 84-94.
114. Wang, S., et al. Reversible Polycondensation-Termination Growth of Covalent-Organic-Framework Spheres, Fibers, and Films. Matter 2019, 1(6), 1592-1605.
115. Zhu, D., et al. Understanding fragility and engineering activation stability in two-dimensional covalent organic frameworks. Chemical Science 2022, 13(33), 9655-9667.
116. Ohyama, J., et al. In Situ Observation of Nucleation and Growth Process of Gold Nanoparticles by Quick XAFS Spectroscopy. ChemPhysChem 2011, 12(1), 127-131.
117. Villa, A., et al. Characterisation of gold catalysts. Chemical Society Reviews 2016, 45(18), 4953-4994.
118. Minguzzi, A., et al. Observing the oxidation state turnover in heterogeneous iridium-based water oxidation catalysts. Chemical Science 2014, 5(9), 3591-3597.
119. Nong, H.N., et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nature Catalysis 2018, 1(11), 841-851.
120. Machado, V.; Morais, M.; Medeiros, R. Hyaluronic Acid-Based Nanomaterials Applied to Cancer: Where Are We Now? Pharmaceutics 2022, 14(10), 2092.
121. Comotti, M., et al. Aerobic Oxidation of Glucose with Gold Catalyst: Hydrogen Peroxide as Intermediate and Reagent. Advanced Synthesis & Catalysis 2006, 348(3), 313-316.
122. Yu, J., et al. Advanced Cancer Starvation Therapy by Simultaneous Deprivation of Lactate and Glucose Using a MOF Nanoplatform. Advanced Science 2021, 8(19), 2101467.