| 研究生: |
蘇延霖 Su, Yen-Lin |
|---|---|
| 論文名稱: |
探討STK11抑制對於乳癌紫杉醇抗藥性的影響 The Effect of STK11 Suppression on Paclitaxel Resistance in Breast Cancer |
| 指導教授: |
徐慧萍
Hsu, Hui-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 乳癌 、絲氨酸/蘇氨酸激酶11 、蛋白質合成 、細胞增生 、細胞凋亡 、紫杉醇抗藥性 、多重抗藥蛋白1 、ATP轉運蛋白E1 |
| 外文關鍵詞: | breast cancer, STK11, protein synthesis, cell proliferation, apoptosis, paclitaxel resistance, MDR1, ABCE1 |
| 相關次數: | 點閱:201 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics, 2024. CA: A Cancer Journal for Clinicians 74, 12-49 (2024). https://doi.org:https://doi.org/10.3322/caac.21820
2. Sun, Y. S. et al. Risk Factors and Preventions of Breast Cancer. Int J Biol Sci 13, 1387-1397 (2017). https://doi.org:10.7150/ijbs.21635
3. Yin, L., Duan, J.-J., Bian, X.-W. & Yu, S.-c. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res 22, 61 (2020). https://doi.org:10.1186/s13058-020-01296-5
4. Admoun, C. & Mayrovitz, H. N. in Breast Cancer (ed H. N. Mayrovitz) (Exon Publications, 2022).
5. Han, S. A. & Kim, S. W. BRCA and Breast Cancer-Related High-Penetrance Genes. Adv Exp Med Biol 1187, 473-490 (2021). https://doi.org:10.1007/978-981-32-9620-6_25
6. Yu, D. & Lu, J. in Encyclopedia of Cancer (ed Manfred Schwab) 522-526 (Springer Berlin Heidelberg, 2011).
7. Dyrstad, S. W., Yan, Y., Fowler, A. M. & Colditz, G. A. Breast cancer risk associated with benign breast disease: systematic review and meta-analysis. Breast Cancer Res Treat 149, 569-575 (2015). https://doi.org:10.1007/s10549-014-3254-6
8. Orrantia-Borunda, E., Anchondo-Nuñez, P., Acuña-Aguilar, L. E., Gómez-Valles, F. O. & Ramírez-Valdespino, C. A. in Breast Cancer (ed H. N. Mayrovitz) (Exon Publications, 2022).
9. Yersal, O. & Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J Clin Oncol 5, 412-424 (2014). https://doi.org:10.5306/wjco.v5.i3.412
10. Obidiro, O., Battogtokh, G. & Akala, E. O. Triple Negative Breast Cancer Treatment Options and Limitations: Future Outlook. Pharmaceutics 15 (2023). https://doi.org:10.3390/pharmaceutics15071796
11. Cserni, G. et al. Triple-Negative Breast Cancer Histological Subtypes with a Favourable Prognosis. Cancers (Basel) 13 (2021). https://doi.org:10.3390/cancers13225694
12. Killmurray, C. Therapy Progression in TNBC Leads to Important Second-Line Decision. Peers & Perspectives in Oncology 1, 52 (2023).
13. Moo, T. A., Sanford, R., Dang, C. & Morrow, M. Overview of Breast Cancer Therapy. PET Clin 13, 339-354 (2018). https://doi.org:10.1016/j.cpet.2018.02.006
14. Czajka, M. L. & Pfeifer, C. in StatPearls (StatPearls Publishing, 2024).
15. Debela, D. T. et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med 9, 20503121211034366 (2021). https://doi.org:10.1177/20503121211034366
16. Yip, C. H. & Rhodes, A. Estrogen and progesterone receptors in breast cancer. Future Oncol 10, 2293-2301 (2014). https://doi.org:10.2217/fon.14.110
17. Mercogliano, M. F., Bruni, S., Mauro, F. L. & Schillaci, R. Emerging Targeted Therapies for HER2-Positive Breast Cancer. Cancers (Basel) 15 (2023). https://doi.org:10.3390/cancers15071987
18. Harbeck, N. & Gnant, M. Breast cancer. The Lancet 389, 1134-1150 (2017). https://doi.org:https://doi.org/10.1016/S0140-6736(16)31891-8
19. Rhodes, L. V. et al. Regulation of triple-negative breast cancer cell metastasis by the tumor-suppressor liver kinase B1. Oncogenesis 4, e168 (2015). https://doi.org:10.1038/oncsis.2015.27
20. Shackelford, D. B. & Shaw, R. J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9, 563-575 (2009). https://doi.org:10.1038/nrc2676
21. Zhang, Q. et al. STK11 mutation impacts CD1E expression to regulate the differentiation of macrophages in lung adenocarcinoma. Immun Inflamm Dis 11, e958 (2023). https://doi.org:10.1002/iid3.958
22. Jenne, D. E. et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18, 38-43 (1998). https://doi.org:10.1038/ng0198-38
23. Alessi, D. R., Sakamoto, K. & Bayascas, J. R. LKB1-dependent signaling pathways. Annu Rev Biochem 75, 137-163 (2006). https://doi.org:10.1146/annurev.biochem.75.103004.142702
24. Boudeau, J. et al. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J 22, 5102-5114 (2003). https://doi.org:10.1093/emboj/cdg490
25. Pons-Tostivint, E., Lugat, A., Fontenau, J. F., Denis, M. G. & Bennouna, J. STK11/LKB1 Modulation of the Immune Response in Lung Cancer: From Biology to Therapeutic Impact. Cells 10 (2021). https://doi.org:10.3390/cells10113129
26. Li, J. et al. Loss of LKB1 disrupts breast epithelial cell polarity and promotes breast cancer metastasis and invasion. Journal of Experimental & Clinical Cancer Research 33, 70 (2014). https://doi.org:10.1186/s13046-014-0070-0
27. Chatterjee, S. J. & McCaffrey, L. Emerging role of cell polarity proteins in breast cancer progression and metastasis. Breast Cancer (Dove Med Press) 6, 15-27 (2014). https://doi.org:10.2147/bctt.S43764
28. Krishnamurthy, N., Goodman, A. M., Barkauskas, D. A. & Kurzrock, R. STK11 alterations in the pan-cancer setting: prognostic and therapeutic implications. Eur J Cancer 148, 215-229 (2021). https://doi.org:10.1016/j.ejca.2021.01.050
29. Tian, T., Li, X. & Zhang, J. mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. Int J Mol Sci 20 (2019). https://doi.org:10.3390/ijms20030755
30. Bohlen, J., Roiuk, M. & Teleman, A. A. Phosphorylation of ribosomal protein S6 differentially affects mRNA translation based on ORF length. Nucleic Acids Res 49, 13062-13074 (2021). https://doi.org:10.1093/nar/gkab1157
31. Yi, Y. W., You, K. S., Park, J. S., Lee, S. G. & Seong, Y. S. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 23 (2021). https://doi.org:10.3390/ijms23010048
32. Chauvin, C. et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene 33, 474-483 (2014). https://doi.org:10.1038/onc.2012.606
33. Zhu, J., Wang, H. & Jiang, X. mTORC1 beyond anabolic metabolism: Regulation of cell death. J Cell Biol 221 (2022). https://doi.org:10.1083/jcb.202208103
34. Sharma, A., Boise, L. H. & Shanmugam, M. Cancer Metabolism and the Evasion of Apoptotic Cell Death. Cancers (Basel) 11 (2019). https://doi.org:10.3390/cancers11081144
35. Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101, 3329-3335 (2004). https://doi.org:10.1073/pnas.0308061100
36. Pradelli, L. A. et al. Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation. Oncogene 29, 1641-1652 (2010). https://doi.org:10.1038/onc.2009.448
37. Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. & Kroemer, G. The molecular machinery of regulated cell death. Cell Res 29, 347-364 (2019). https://doi.org:10.1038/s41422-019-0164-5
38. McIlwain, D. R., Berger, T. & Mak, T. W. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 7 (2015). https://doi.org:10.1101/cshperspect.a026716
39. Ilagan, E. & Manning, B. D. Emerging role of mTOR in the response to cancer therapeutics. Trends Cancer 2, 241-251 (2016). https://doi.org:10.1016/j.trecan.2016.03.008
40. Pan, Z., Zhang, H. & Dokudovskaya, S. The Role of mTORC1 Pathway and Autophagy in Resistance to Platinum-Based Chemotherapeutics. Int J Mol Sci 24 (2023). https://doi.org:10.3390/ijms241310651
41. Jiang, B. H. & Liu, L. Z. Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist Updat 11, 63-76 (2008). https://doi.org:10.1016/j.drup.2008.03.001
42. Zhao, T., Zhang, T., Zhang, Y., Zhou, B. & Lu, X. Paclitaxel Resistance Modulated by the Interaction between TRPS1 and AF178030.2 in Triple-Negative Breast Cancer. Evid Based Complement Alternat Med 2022, 6019975 (2022). https://doi.org:10.1155/2022/6019975
43. Škubník, J., Pavlíčková, V., Ruml, T. & Rimpelová, S. Current Perspectives on Taxanes: Focus on Their Bioactivity, Delivery and Combination Therapy. Plants (Basel) 10 (2021). https://doi.org:10.3390/plants10030569
44. Lim, P. T., Goh, B. H. & Lee, W.-L. in Paclitaxel (eds Mallappa Kumara Swamy, T. Pullaiah, & Zhe-Sheng Chen) 47-71 (Academic Press, 2022).
45. Kristensson, M. A. The Game of Tubulins. Cells 10 (2021). https://doi.org:10.3390/cells10040745
46. Smith, E. R. & Xu, X. X. Breaking malignant nuclei as a non-mitotic mechanism of taxol/paclitaxel. J Cancer Biol 2, 86-93 (2021). https://doi.org:10.46439/cancerbiology.2.031
47. Karthika, C. et al. Multidrug Resistance of Cancer Cells and the Vital Role of P-Glycoprotein. Life (Basel) 12 (2022). https://doi.org:10.3390/life12060897
48. Mao, K. et al. Re-expression of LKB1 in LKB1-mutant EKVX cells leads to resistance to paclitaxel through the up-regulation of MDR1 expression. Lung Cancer 88, 131-138 (2015). https://doi.org:10.1016/j.lungcan.2015.02.017
49. Yu, J. et al. A pan-cancer analysis of the oncogenic role of ATP binding cassette subfamily E member 1 (ABCE1) in human tumors: An observational study. Medicine (Baltimore) 101, e31849 (2022). https://doi.org:10.1097/MD.0000000000031849
50. Gao, J. et al. Suppression of ABCE1-Mediated mRNA Translation Limits N-MYC-Driven Cancer Progression. Cancer Res 80, 3706-3718 (2020). https://doi.org:10.1158/0008-5472.CAN-19-3914
51. Tian, Y. et al. ABCE1 plays an essential role in lung cancer progression and metastasis. Tumour Biol 37, 8375-8382 (2016). https://doi.org:10.1007/s13277-015-4713-3
52. Huang, B., Zhou, H., Lang, X. & Liu, Z. siRNA‑induced ABCE1 silencing inhibits proliferation and invasion of breast cancer cells. Mol Med Rep 10, 1685-1690 (2014). https://doi.org:10.3892/mmr.2014.2424
53. Hellen, C. U. T. Translation Termination and Ribosome Recycling in Eukaryotes. Cold Spring Harb Perspect Biol 10 (2018). https://doi.org:10.1101/cshperspect.a032656
54. Pisarev, A. V. et al. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol Cell 37, 196-210 (2010). https://doi.org:10.1016/j.molcel.2009.12.034
55. Yasui, K. et al. Alteration in copy numbers of genes as a mechanism for acquired drug resistance. Cancer Res 64, 1403-1410 (2004). https://doi.org:10.1158/0008-5472.can-3263-2
56. Zheng, D., Dai, Y., Wang, S. & Xing, X. MicroRNA-299-3p promotes the sensibility of lung cancer to doxorubicin through directly targeting ABCE1. Int J Clin Exp Pathol 8, 10072-10081 (2015).
57. Kara, G., Tuncer, S., Türk, M. & Denkbaş, E. B. Downregulation of ABCE1 via siRNA affects the sensitivity of A549 cells against chemotherapeutic agents. Med Oncol 32, 103 (2015). https://doi.org:10.1007/s12032-015-0557-3
58. Ravi, V., Jain, A., Mishra, S. & Sundaresan, N. R. Measuring Protein Synthesis in Cultured Cells and Mouse Tissues Using the Non-radioactive SUnSET Assay. Curr Protoc Mol Biol 133, e127 (2020). https://doi.org:10.1002/cpmb.127
59. Goodman, C. A. & Hornberger, T. A. Measuring protein synthesis with SUnSET: a valid alternative to traditional techniques? Exerc Sport Sci Rev 41, 107-115 (2013). https://doi.org:10.1097/JES.0b013e3182798a95
60. Bartha, Á. & Győrffy, B. TNMplot.com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic Tissues. Int J Mol Sci 22 (2021). https://doi.org:10.3390/ijms22052622
61. Biever, A., Valjent, E. & Puighermanal, E. Ribosomal Protein S6 Phosphorylation in the Nervous System: From Regulation to Function. Front Mol Neurosci 8, 75 (2015). https://doi.org:10.3389/fnmol.2015.00075
62. Meyuhas, O. Ribosomal Protein S6 Phosphorylation: Four Decades of Research. Int Rev Cell Mol Biol 320, 41-73 (2015). https://doi.org:10.1016/bs.ircmb.2015.07.006
63. Filippi, B. M. et al. MO25 is a master regulator of SPAK/OSR1 and MST3/MST4/YSK1 protein kinases. Embo j 30, 1730-1741 (2011). https://doi.org:10.1038/emboj.2011.78
64. Forster, S., Thumser, A. E., Hood, S. R. & Plant, N. Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS One 7, e33253 (2012). https://doi.org:10.1371/journal.pone.0033253
65. Wu, J. et al. Induction of P-glycoprotein expression and activity by Aconitum alkaloids: Implication for clinical drug–drug interactions. Scientific Reports 6, 25343 (2016). https://doi.org:10.1038/srep25343
66. Weigelt, B., Geyer, F. C. & Reis-Filho, J. S. Histological types of breast cancer: how special are they? Mol Oncol 4, 192-208 (2010). https://doi.org:10.1016/j.molonc.2010.04.004
67. Polchai, N. & Thongvitokomarn, S. Extensive intraductal component as a factor determining local recurrence of breast cancer: a systematic review and meta-analysis. Gland Surg 12, 1336-1347 (2023). https://doi.org:10.21037/gs-23-137
68. Kulwatno, J. et al. Growth of tumor emboli within a vessel model reveals dependence on the magnitude of mechanical constraint. Integrative Biology 13, 1-16 (2021). https://doi.org:10.1093/intbio/zyaa024
校內:2026-11-01公開