簡易檢索 / 詳目顯示

研究生: 蘇延霖
Su, Yen-Lin
論文名稱: 探討STK11抑制對於乳癌紫杉醇抗藥性的影響
The Effect of STK11 Suppression on Paclitaxel Resistance in Breast Cancer
指導教授: 徐慧萍
Hsu, Hui-Ping
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 55
中文關鍵詞: 乳癌絲氨酸/蘇氨酸激酶11蛋白質合成細胞增生細胞凋亡紫杉醇抗藥性多重抗藥蛋白1ATP轉運蛋白E1
外文關鍵詞: breast cancer, STK11, protein synthesis, cell proliferation, apoptosis, paclitaxel resistance, MDR1, ABCE1
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 學位考試合格證明 i 摘要 ii Abstract iv Acknowledgments vi Table of contents vii Introduction 1 Breast cancer 1 Serine/Threonine kinase 11 (STK11) 4 Biological functions of STK11 4 STK11/AMPK/mTORC1 pathway and ribosomal protein S6 4 STK11/AMPK/mTORC1 pathway and apoptosis 5 STK11/AMPK/mTORC1 pathway and drug resistance 6 ATP-binding cassette E1 (ABCE1) 8 Rationale and hypothesis 10 Specific aims 11 Materials and methods 12 Cell culture 12 Breast tissue specimens 12 Plasmid DNA extraction 12 STK11-knockdown cell generation 13 Cell proliferation 13 Cell viability of paclitaxel treatment 14 Puromycin incorporation assay 14 RNA isolation, reverse transcription, and quantitative real-time PCR (qPCR) 15 Western blot 16 Statistical analysis 17 Results 18 Aim 1. To evaluate the expression of STK11 and its correlation with ABCE1 in breast cancer. 18 Aim 2. To evaluate protein synthesis, cell proliferation, and apoptosis in STK11-knockdown breast cancer cells. 19 Aim 3. To investigate the effect of STK11 suppression on sensitivity to paclitaxel. 21 Discussion 22 Conclusion 25 Figures 26 Figure 1. Gene expression of STK11, STRAD, and CAB39 in breast cancer from GEPIA2 database. 26 Figure 2. Correlation between STK11 and ABCE1 in breast cancer. 28 Figure 3. Transfection efficacy of each single clone. 29 Figure 4. The effect of STK11 suppression on AMPK/mTORC1/RPS6 signal transduction. 30 Figure 5. The effect of STK11 suppression on protein synthesis and cell proliferation. 31 Figure 6. The effect of STK11 suppression on apoptosis. 32 Figure 7. Paclitaxel sensitivity increased in STK11-knockdown MDA-MB-231 cells through decreasing the expression levels of MDR1. 34 Figure 8. Schematic summary of the effect of STK11 suppression on paclitaxel resistance, protein synthesis, cell proliferation, apoptosis, and ABCE1. 35 Tables 36 Table 1. pLKO.1-Puro cloning vectors and their target sequences. 36 Table 2. Demographics of 10 breast cancer patients. 37 References 40 Supplementary data 46

    1. Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics, 2024. CA: A Cancer Journal for Clinicians 74, 12-49 (2024). https://doi.org:https://doi.org/10.3322/caac.21820
    2. Sun, Y. S. et al. Risk Factors and Preventions of Breast Cancer. Int J Biol Sci 13, 1387-1397 (2017). https://doi.org:10.7150/ijbs.21635
    3. Yin, L., Duan, J.-J., Bian, X.-W. & Yu, S.-c. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res 22, 61 (2020). https://doi.org:10.1186/s13058-020-01296-5
    4. Admoun, C. & Mayrovitz, H. N. in Breast Cancer (ed H. N. Mayrovitz) (Exon Publications, 2022).
    5. Han, S. A. & Kim, S. W. BRCA and Breast Cancer-Related High-Penetrance Genes. Adv Exp Med Biol 1187, 473-490 (2021). https://doi.org:10.1007/978-981-32-9620-6_25
    6. Yu, D. & Lu, J. in Encyclopedia of Cancer (ed Manfred Schwab) 522-526 (Springer Berlin Heidelberg, 2011).
    7. Dyrstad, S. W., Yan, Y., Fowler, A. M. & Colditz, G. A. Breast cancer risk associated with benign breast disease: systematic review and meta-analysis. Breast Cancer Res Treat 149, 569-575 (2015). https://doi.org:10.1007/s10549-014-3254-6
    8. Orrantia-Borunda, E., Anchondo-Nuñez, P., Acuña-Aguilar, L. E., Gómez-Valles, F. O. & Ramírez-Valdespino, C. A. in Breast Cancer (ed H. N. Mayrovitz) (Exon Publications, 2022).
    9. Yersal, O. & Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J Clin Oncol 5, 412-424 (2014). https://doi.org:10.5306/wjco.v5.i3.412
    10. Obidiro, O., Battogtokh, G. & Akala, E. O. Triple Negative Breast Cancer Treatment Options and Limitations: Future Outlook. Pharmaceutics 15 (2023). https://doi.org:10.3390/pharmaceutics15071796
    11. Cserni, G. et al. Triple-Negative Breast Cancer Histological Subtypes with a Favourable Prognosis. Cancers (Basel) 13 (2021). https://doi.org:10.3390/cancers13225694
    12. Killmurray, C. Therapy Progression in TNBC Leads to Important Second-Line Decision. Peers & Perspectives in Oncology 1, 52 (2023).
    13. Moo, T. A., Sanford, R., Dang, C. & Morrow, M. Overview of Breast Cancer Therapy. PET Clin 13, 339-354 (2018). https://doi.org:10.1016/j.cpet.2018.02.006
    14. Czajka, M. L. & Pfeifer, C. in StatPearls (StatPearls Publishing, 2024).
    15. Debela, D. T. et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med 9, 20503121211034366 (2021). https://doi.org:10.1177/20503121211034366
    16. Yip, C. H. & Rhodes, A. Estrogen and progesterone receptors in breast cancer. Future Oncol 10, 2293-2301 (2014). https://doi.org:10.2217/fon.14.110
    17. Mercogliano, M. F., Bruni, S., Mauro, F. L. & Schillaci, R. Emerging Targeted Therapies for HER2-Positive Breast Cancer. Cancers (Basel) 15 (2023). https://doi.org:10.3390/cancers15071987
    18. Harbeck, N. & Gnant, M. Breast cancer. The Lancet 389, 1134-1150 (2017). https://doi.org:https://doi.org/10.1016/S0140-6736(16)31891-8
    19. Rhodes, L. V. et al. Regulation of triple-negative breast cancer cell metastasis by the tumor-suppressor liver kinase B1. Oncogenesis 4, e168 (2015). https://doi.org:10.1038/oncsis.2015.27
    20. Shackelford, D. B. & Shaw, R. J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9, 563-575 (2009). https://doi.org:10.1038/nrc2676
    21. Zhang, Q. et al. STK11 mutation impacts CD1E expression to regulate the differentiation of macrophages in lung adenocarcinoma. Immun Inflamm Dis 11, e958 (2023). https://doi.org:10.1002/iid3.958
    22. Jenne, D. E. et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18, 38-43 (1998). https://doi.org:10.1038/ng0198-38
    23. Alessi, D. R., Sakamoto, K. & Bayascas, J. R. LKB1-dependent signaling pathways. Annu Rev Biochem 75, 137-163 (2006). https://doi.org:10.1146/annurev.biochem.75.103004.142702
    24. Boudeau, J. et al. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J 22, 5102-5114 (2003). https://doi.org:10.1093/emboj/cdg490
    25. Pons-Tostivint, E., Lugat, A., Fontenau, J. F., Denis, M. G. & Bennouna, J. STK11/LKB1 Modulation of the Immune Response in Lung Cancer: From Biology to Therapeutic Impact. Cells 10 (2021). https://doi.org:10.3390/cells10113129
    26. Li, J. et al. Loss of LKB1 disrupts breast epithelial cell polarity and promotes breast cancer metastasis and invasion. Journal of Experimental & Clinical Cancer Research 33, 70 (2014). https://doi.org:10.1186/s13046-014-0070-0
    27. Chatterjee, S. J. & McCaffrey, L. Emerging role of cell polarity proteins in breast cancer progression and metastasis. Breast Cancer (Dove Med Press) 6, 15-27 (2014). https://doi.org:10.2147/bctt.S43764
    28. Krishnamurthy, N., Goodman, A. M., Barkauskas, D. A. & Kurzrock, R. STK11 alterations in the pan-cancer setting: prognostic and therapeutic implications. Eur J Cancer 148, 215-229 (2021). https://doi.org:10.1016/j.ejca.2021.01.050
    29. Tian, T., Li, X. & Zhang, J. mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. Int J Mol Sci 20 (2019). https://doi.org:10.3390/ijms20030755
    30. Bohlen, J., Roiuk, M. & Teleman, A. A. Phosphorylation of ribosomal protein S6 differentially affects mRNA translation based on ORF length. Nucleic Acids Res 49, 13062-13074 (2021). https://doi.org:10.1093/nar/gkab1157
    31. Yi, Y. W., You, K. S., Park, J. S., Lee, S. G. & Seong, Y. S. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 23 (2021). https://doi.org:10.3390/ijms23010048
    32. Chauvin, C. et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene 33, 474-483 (2014). https://doi.org:10.1038/onc.2012.606
    33. Zhu, J., Wang, H. & Jiang, X. mTORC1 beyond anabolic metabolism: Regulation of cell death. J Cell Biol 221 (2022). https://doi.org:10.1083/jcb.202208103
    34. Sharma, A., Boise, L. H. & Shanmugam, M. Cancer Metabolism and the Evasion of Apoptotic Cell Death. Cancers (Basel) 11 (2019). https://doi.org:10.3390/cancers11081144
    35. Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101, 3329-3335 (2004). https://doi.org:10.1073/pnas.0308061100
    36. Pradelli, L. A. et al. Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation. Oncogene 29, 1641-1652 (2010). https://doi.org:10.1038/onc.2009.448
    37. Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. & Kroemer, G. The molecular machinery of regulated cell death. Cell Res 29, 347-364 (2019). https://doi.org:10.1038/s41422-019-0164-5
    38. McIlwain, D. R., Berger, T. & Mak, T. W. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 7 (2015). https://doi.org:10.1101/cshperspect.a026716
    39. Ilagan, E. & Manning, B. D. Emerging role of mTOR in the response to cancer therapeutics. Trends Cancer 2, 241-251 (2016). https://doi.org:10.1016/j.trecan.2016.03.008
    40. Pan, Z., Zhang, H. & Dokudovskaya, S. The Role of mTORC1 Pathway and Autophagy in Resistance to Platinum-Based Chemotherapeutics. Int J Mol Sci 24 (2023). https://doi.org:10.3390/ijms241310651
    41. Jiang, B. H. & Liu, L. Z. Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist Updat 11, 63-76 (2008). https://doi.org:10.1016/j.drup.2008.03.001
    42. Zhao, T., Zhang, T., Zhang, Y., Zhou, B. & Lu, X. Paclitaxel Resistance Modulated by the Interaction between TRPS1 and AF178030.2 in Triple-Negative Breast Cancer. Evid Based Complement Alternat Med 2022, 6019975 (2022). https://doi.org:10.1155/2022/6019975
    43. Škubník, J., Pavlíčková, V., Ruml, T. & Rimpelová, S. Current Perspectives on Taxanes: Focus on Their Bioactivity, Delivery and Combination Therapy. Plants (Basel) 10 (2021). https://doi.org:10.3390/plants10030569
    44. Lim, P. T., Goh, B. H. & Lee, W.-L. in Paclitaxel (eds Mallappa Kumara Swamy, T. Pullaiah, & Zhe-Sheng Chen) 47-71 (Academic Press, 2022).
    45. Kristensson, M. A. The Game of Tubulins. Cells 10 (2021). https://doi.org:10.3390/cells10040745
    46. Smith, E. R. & Xu, X. X. Breaking malignant nuclei as a non-mitotic mechanism of taxol/paclitaxel. J Cancer Biol 2, 86-93 (2021). https://doi.org:10.46439/cancerbiology.2.031
    47. Karthika, C. et al. Multidrug Resistance of Cancer Cells and the Vital Role of P-Glycoprotein. Life (Basel) 12 (2022). https://doi.org:10.3390/life12060897
    48. Mao, K. et al. Re-expression of LKB1 in LKB1-mutant EKVX cells leads to resistance to paclitaxel through the up-regulation of MDR1 expression. Lung Cancer 88, 131-138 (2015). https://doi.org:10.1016/j.lungcan.2015.02.017
    49. Yu, J. et al. A pan-cancer analysis of the oncogenic role of ATP binding cassette subfamily E member 1 (ABCE1) in human tumors: An observational study. Medicine (Baltimore) 101, e31849 (2022). https://doi.org:10.1097/MD.0000000000031849
    50. Gao, J. et al. Suppression of ABCE1-Mediated mRNA Translation Limits N-MYC-Driven Cancer Progression. Cancer Res 80, 3706-3718 (2020). https://doi.org:10.1158/0008-5472.CAN-19-3914
    51. Tian, Y. et al. ABCE1 plays an essential role in lung cancer progression and metastasis. Tumour Biol 37, 8375-8382 (2016). https://doi.org:10.1007/s13277-015-4713-3
    52. Huang, B., Zhou, H., Lang, X. & Liu, Z. siRNA‑induced ABCE1 silencing inhibits proliferation and invasion of breast cancer cells. Mol Med Rep 10, 1685-1690 (2014). https://doi.org:10.3892/mmr.2014.2424
    53. Hellen, C. U. T. Translation Termination and Ribosome Recycling in Eukaryotes. Cold Spring Harb Perspect Biol 10 (2018). https://doi.org:10.1101/cshperspect.a032656
    54. Pisarev, A. V. et al. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol Cell 37, 196-210 (2010). https://doi.org:10.1016/j.molcel.2009.12.034
    55. Yasui, K. et al. Alteration in copy numbers of genes as a mechanism for acquired drug resistance. Cancer Res 64, 1403-1410 (2004). https://doi.org:10.1158/0008-5472.can-3263-2
    56. Zheng, D., Dai, Y., Wang, S. & Xing, X. MicroRNA-299-3p promotes the sensibility of lung cancer to doxorubicin through directly targeting ABCE1. Int J Clin Exp Pathol 8, 10072-10081 (2015).
    57. Kara, G., Tuncer, S., Türk, M. & Denkbaş, E. B. Downregulation of ABCE1 via siRNA affects the sensitivity of A549 cells against chemotherapeutic agents. Med Oncol 32, 103 (2015). https://doi.org:10.1007/s12032-015-0557-3
    58. Ravi, V., Jain, A., Mishra, S. & Sundaresan, N. R. Measuring Protein Synthesis in Cultured Cells and Mouse Tissues Using the Non-radioactive SUnSET Assay. Curr Protoc Mol Biol 133, e127 (2020). https://doi.org:10.1002/cpmb.127
    59. Goodman, C. A. & Hornberger, T. A. Measuring protein synthesis with SUnSET: a valid alternative to traditional techniques? Exerc Sport Sci Rev 41, 107-115 (2013). https://doi.org:10.1097/JES.0b013e3182798a95
    60. Bartha, Á. & Győrffy, B. TNMplot.com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic Tissues. Int J Mol Sci 22 (2021). https://doi.org:10.3390/ijms22052622
    61. Biever, A., Valjent, E. & Puighermanal, E. Ribosomal Protein S6 Phosphorylation in the Nervous System: From Regulation to Function. Front Mol Neurosci 8, 75 (2015). https://doi.org:10.3389/fnmol.2015.00075
    62. Meyuhas, O. Ribosomal Protein S6 Phosphorylation: Four Decades of Research. Int Rev Cell Mol Biol 320, 41-73 (2015). https://doi.org:10.1016/bs.ircmb.2015.07.006
    63. Filippi, B. M. et al. MO25 is a master regulator of SPAK/OSR1 and MST3/MST4/YSK1 protein kinases. Embo j 30, 1730-1741 (2011). https://doi.org:10.1038/emboj.2011.78
    64. Forster, S., Thumser, A. E., Hood, S. R. & Plant, N. Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS One 7, e33253 (2012). https://doi.org:10.1371/journal.pone.0033253
    65. Wu, J. et al. Induction of P-glycoprotein expression and activity by Aconitum alkaloids: Implication for clinical drug–drug interactions. Scientific Reports 6, 25343 (2016). https://doi.org:10.1038/srep25343
    66. Weigelt, B., Geyer, F. C. & Reis-Filho, J. S. Histological types of breast cancer: how special are they? Mol Oncol 4, 192-208 (2010). https://doi.org:10.1016/j.molonc.2010.04.004
    67. Polchai, N. & Thongvitokomarn, S. Extensive intraductal component as a factor determining local recurrence of breast cancer: a systematic review and meta-analysis. Gland Surg 12, 1336-1347 (2023). https://doi.org:10.21037/gs-23-137
    68. Kulwatno, J. et al. Growth of tumor emboli within a vessel model reveals dependence on the magnitude of mechanical constraint. Integrative Biology 13, 1-16 (2021). https://doi.org:10.1093/intbio/zyaa024

    無法下載圖示 校內:2026-11-01公開
    校外:2026-11-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE