簡易檢索 / 詳目顯示

研究生: 朱彥宇
Chu, Yen-Yu
論文名稱: 染料敏化太陽能電池二氧化鈦薄膜的電泳製備研究
Electrophoretic Deposition of TiO2 Films for Dye-Sensitized Solar Cells
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 96
中文關鍵詞: 薄膜製備電泳沉積電子傳遞電子搜集效率
外文關鍵詞: Electrophoretic deposition, electron transfer path, transit time, lifetime, collection effeciency
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光電極薄膜中載子傳遞速率影響著染料敏化太陽能電池的光電轉換效率。 本研究是以自行開發的合成法製備二氧化鈦奈米顆粒,分別以Paste-coating及Electrophoretic Deposition法製作光電極薄膜,以氮氣吸脫附分析、SEM了解比表面積及孔徑分佈,再以I-V curve比較二者的光應答特性,配合IMPS、IMVS、EIS了解載子傳遞特性,依此比較不同薄膜製備法對電子傳遞的影響。
    經氮氣吸脫附分析及SEM觀測,發現電泳法擁有較高的比表面積及緊密的堆疊。 在光應答方面,因為電泳法製備薄膜擁有較高的電流表現,在光電轉換效率上明顯優於Paste-coating,以IMPS分析結果發現電泳法的電子傳遞時間僅為Paste-coating的一半,但IMVS的測試顯示電子生存時間較短。 EIS分析電池參數,發現電泳法有極佳的表現,在電子搜集效率上高達93%,擴散長度最高可達43µm,表現十分優秀。
    經由實驗得知,因為電泳法製備薄膜的緊密堆疊,造成染料吸附量提高,電子傳遞路徑降低,因此電子搜集率高,使得電流高於Paste-coating,擁有較佳的效率表現。

    The charge transfer rate in the nanocrystalline TiO2 electrode govern the performance of a dye-sensitized solar cell(DSSC). In this study, TiO2 colloids derived from a titanate-directed route and used to prepare electrode by two methods: Paste-coating and Electrophoretic Deposition. Nitrogen absorption-desorption and SEM was used to analysis the pore and electrode morphology. In order to compare the difference of charge transfer, IMPS, IMVS, and EIS were used.
    By the analysis of nitrogen absorption-desorption and SEM, electrophoretic solution has higher surface area, and the electrode morphology was dense packing. Cell performance of electrophoretic electrode was better than paste-coating because of its high current density. IMPS showed a higher electron transfer rate for electrophoretic electrode, but the electron lifetime is shorter by the IMVS analyzing. In EIS testing, the charge collection efficiency and diffusion length were 91% and 43µm, respectively.
    The dense packing caused the much more dye to absorb, decreased the path for electron transfer, so electrophoretic electrode has higher charge collection efficiency, current density, and lower open-circuit voltage.

    中文摘要.........I Abstract........II 目錄............IV 圖目錄..........VIII 表目錄..........XIV 第一章 緒論.................................1 1-1 前言 ..................................1 1-2 半導體簡介.............................2 1-3 各種太陽能電池發展現況及比較..............5 1-4 電泳沉積 (Electrophoretic Deposition) ..8 1-5 研究背景與目的..........................10 第二章 文獻回顧與理論說明....................11 2-1 染料敏化太陽能電池......................11 2-1.1 裝置構造.............................11 2-1.2 工作原理.............................11 2-1.3 逆反應...............................12 2-2 奈米結晶多孔膜電極......................15 2-3 染料敏化劑.............................18 2-4 電解質.................................21 2-5 相對電極...............................24 2-6 電子傳遞理論...........................24 2-6.1 染料敏化太陽能電池的連續方程式..........24 2-6.2 電子傳遞.............................25 2-7 電泳沉積 (Electrophoretic deposition) ..29 第三章 實驗方法及儀器原理介紹.................33 3-1 實驗藥品與器具..........................33 3-2 實驗設備...............................34 3-3 二氧化鈦奈米顆粒paste及電泳液製作與相關測試...35 3-3.1 水熱法合成二氧化鈦奈米顆粒.............35 3-3.2 製做二氧化鈦奈米顆粒paste.............35 3-3.3 製做二氧化鈦奈米顆粒電泳液.............36 3-3.4 XRD 繞射分析.........................37 3-3.5 BET 和BJH 分析.......................40 3-4 製作染料敏化太陽能電池...................43 3-4.1 Doctor blade法製備二氧化鈦薄膜電極.....43 3-4.2 Electrophoretic Deposition法製備二氧化鈦薄膜電極...43 3-4.3 染料敏化劑的吸附......................44 3-4.4 電解質的配製..........................44 3-4.5 相對電極的製備........................45 3-4.6 組裝染料敏化太陽能電池.................45 3-5電池的電性測試...........................47 3-5.1 I-V 特性曲線的測試....................47 3-5.2 IMPS 和IMVS 的測量...................49 3-5.3 EIS測量..............................52 第四章 結果與討論...........................54 4-1 二氧化鈦奈米顆粒特性分析.................54 4-2 電泳法製備二氧化鈦薄膜條件測試............56 4-2.1 二氧化鈦濃度測試......................56 4-2.2 電位測試.............................57 4-2.3 高膜厚製備條件測試....................58 4-2.4 電池效率表現.........................61 4-3 刮刀塗佈法與電泳沉積製備電池之比較........64 4-3.1氮氣吸脫附分析.........................64 4-3.2薄膜SEM分析...........................66 4-3.3 電池效率表現..........................68 4-3.4 電子傳遞時間..........................71 4-3.5 電子生存時間..........................77 4-3.6 以EIS圖譜分析電池原件參數..............79 4-3.7 H240與EPD於X光吸收光譜的差異 ..........85 第五章 結論.................................88 5-1 電泳法製備染料敏化太陽能電池光電極薄膜.....88 5-2 刮刀塗佈法與電泳法製備電池比較............88 第六章 參考資料.............................90 自述.......................................96

    1.M.Grätzel, Nature, 414, 338, (2001).
    2.C. Y. Chen, M. K. Wang, J. Y. Li , N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin, M. Gratzel, ACS nano, 3, 3103, (2009)
    3.I. Zhitomirsky, Adv. Colloid Interface Sci., 97, 279, (2002).
    4.D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, J. Phys. Chem. B, 104, 2053, (2000).
    5.D. Matthews, P. Infelta, M. Grätzel, Sol. Energy Mater. Sol. Cells, 44, 119, (1996).
    6.M. Grätzel, J. Photochem. Photobio. A, 164, 3, (2004).
    7.A. Hagfeldt, M. Grätzel, Chem. Rev., 95, 49, (1995)
    8.K. Kalyanasundaram, M. Grätzel, Coord. Chem. rev., 177, 347, (1998).
    9.N.G. Park, J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B, 104, 8989, (2000).
    10.C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, J. Am. Ceram. Soc., 80, 3157, (1997).
    11.M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc., 115, 6382, (1993).
    12.G. P. Smestad, M. Grätzel, J. Chem. Educ., 75, 752, (1998).
    13.M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc., 123, 1613, (2001).
    14.M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Gratzel, J. Am. Chem. Soc., 127, 16835, (2005).
    15.G. J. Meyer, J. Chem. Educ., 74, 652, (1997).
    16.S. Cherian, C. C. Wamser, J. Phys. Chem. B, 104, 3624, (2000).
    17.S. Y. Huang, G. Schlichthorl, A.J. Nozik, J. Phys. Chem. B, 101, 2576, (1997).
    18.A. Hauch, R. Kern, J. Ferber, “Charactisation of the Electrolyte-solid interfaces of Dye-Sensitized Solar Cell by Means of Impedance Spectroscopy”, 2nd World Conference, Vienna, European Communities, (1998).
    19.N. Papageorgiou, M. Grätzel, P. P. Infelta, Sol. Energy Mater. Sol. Cells, 44, 405, (1996).
    20.U. Bach, D. Lupo, P. Comte, Nature, 395, 583, (1998).
    21.P. Wang, S. M. Zakeeruddin, I. Exnarb, M. Grätzel, Chem. Commun., 2972, (2002).
    22.E. Stathatos, P. Lianos, Chem. Mater., 15, 1825, (2003).
    23.N. Papageorgiou, W. F. Maier, M. Grätzel, J. Electrochem. Soc., 144, 99, (1996).
    24.A. Kay, M. Grätzel, Sol. Energy Mater. Sol. Cells, 44, 99, (1996).
    25.L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J.Shaw, and I, Uhlendor, J. Phys. Chem. B, 101, 10281, (1997).
    26.I. Zhitomirsky, L. Gal-Or, in: N.B. Dahotre, T.S. Sudarshan (Eds.), Intermetallic and Ceramic Coatings, Marcel Dekker Inc, New York, 1999, chapter 3.
    27.I. Zhitomirsky, Mater. Lett.,33, 305, (1998).
    28.J. A. Lewis, J. Am. Ceram. Soc., 83, 2341, (2000).
    29.D. Matthews, A. Kay, M. Gratzel, Aust. J. Chem., 47, 1869, (1994).
    30.K. Fujimura, S. Yoshikado, Key Eng. Mater., 248, 133, (2003).
    31.I. Zhitomirsky, Adv. Colloid Interface Sci., 97, 279, (2002).
    32.J. Tabellion, R. Clasen, J. Mater. Sci., 39, 803, (2004).
    33.T. Miyasaka, Y. Kijitori, J. Electrochem. Soc., 151 (11) , A1767, (2004).
    34.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir, 14, 3160, (1998).
    35.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater., 11, 1307, (1999).
    36.L. Grinis, Journal of Photochemistry and Photobiology A, 198, 52, (2008)
    37.B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction”, 3rd ed., Prentice, (2001).
    38.C. Kittel, “Introduction to Solid State Physics”, Wiley, 4th ed., (1971).
    39.M. Yan, F. Chen, J. Zhang, M. Anpo, J. Phys. Chem. B, 109, 8673, (2005).
    40.S. Brunaller, P. H. Emmett, E. Teller, J. Am. Chem. Soc., 60, 390, (1938).
    41.E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc., 73, 373, (1951).
    42.M. Kruk, M. Jaroniec, J. Phys. Chem. B, 104, 7960, (2000).
    43.J. Kru1ger, R. Plass, M. Gratzel, P. J. Cameron, L. M. Peter, J. Phys. Chem. B, 107, 7536, (2003).
    44.F. Febregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, M. Grätzel, J. Phys. Chem. C, 111, 6550, (2007).
    45.M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, J. Phys. Chem. B, 110 , 13872, (2006).
    46.R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Electrochim. Atca, 47, 4213, (2002).
    47.C. C. Tsai, H. S. Teng, Chem. Mater., 18, 367, (2006)
    48.蔡建成, “由水熱處理二氧化鈦所合成奈米管之結構分析”, 國立成功大學化學工程研究所碩士論文, (2005).
    49.S. Dor, S. Ruhle, A. Ofir, M. Adler, L. Grinis, A. Zaban, Colloids and Surfaces A: Physicochem., 342, 70, (2009).
    50.A. M. Peiro, E. Brillas, J. Peral, X. Domenech, J. A. Ayllon, J. Mater. Chem., 12 , 2769, (2002).
    51.P. T. Hsiao, Y. L. Tung, H. S. Teng, J. Phys. Chem. C, 114, 6762, (2010)
    52.A. J. Frank, N. Kopidakis, J. van de Lagemaat, Coordination Chemistry Reviews, 248, 1165, (2004).
    53.N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B, 107, 11307, (2003)
    54.L. M. Peter, J. Phys. Chem. C, 111, 6601, (2007).
    55.Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, J. Phys. Chem. B, 110, 50, (2006).
    56.Z. Y. Wu, G. Ouvrard, P. Gressier, C. R. Natoli, “Ti and O K edges for Titanium Oxides by Multiple Scattering Calculations: Comparison to XAS and EELS Spectra”, Phys. Rev. B, 55, 10382, (1997).

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE