| 研究生: |
朱彥宇 Chu, Yen-Yu |
|---|---|
| 論文名稱: |
染料敏化太陽能電池二氧化鈦薄膜的電泳製備研究 Electrophoretic Deposition of TiO2 Films for Dye-Sensitized Solar Cells |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 薄膜製備 、電泳沉積 、電子傳遞 、電子搜集效率 |
| 外文關鍵詞: | Electrophoretic deposition, electron transfer path, transit time, lifetime, collection effeciency |
| 相關次數: | 點閱:75 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光電極薄膜中載子傳遞速率影響著染料敏化太陽能電池的光電轉換效率。 本研究是以自行開發的合成法製備二氧化鈦奈米顆粒,分別以Paste-coating及Electrophoretic Deposition法製作光電極薄膜,以氮氣吸脫附分析、SEM了解比表面積及孔徑分佈,再以I-V curve比較二者的光應答特性,配合IMPS、IMVS、EIS了解載子傳遞特性,依此比較不同薄膜製備法對電子傳遞的影響。
經氮氣吸脫附分析及SEM觀測,發現電泳法擁有較高的比表面積及緊密的堆疊。 在光應答方面,因為電泳法製備薄膜擁有較高的電流表現,在光電轉換效率上明顯優於Paste-coating,以IMPS分析結果發現電泳法的電子傳遞時間僅為Paste-coating的一半,但IMVS的測試顯示電子生存時間較短。 EIS分析電池參數,發現電泳法有極佳的表現,在電子搜集效率上高達93%,擴散長度最高可達43µm,表現十分優秀。
經由實驗得知,因為電泳法製備薄膜的緊密堆疊,造成染料吸附量提高,電子傳遞路徑降低,因此電子搜集率高,使得電流高於Paste-coating,擁有較佳的效率表現。
The charge transfer rate in the nanocrystalline TiO2 electrode govern the performance of a dye-sensitized solar cell(DSSC). In this study, TiO2 colloids derived from a titanate-directed route and used to prepare electrode by two methods: Paste-coating and Electrophoretic Deposition. Nitrogen absorption-desorption and SEM was used to analysis the pore and electrode morphology. In order to compare the difference of charge transfer, IMPS, IMVS, and EIS were used.
By the analysis of nitrogen absorption-desorption and SEM, electrophoretic solution has higher surface area, and the electrode morphology was dense packing. Cell performance of electrophoretic electrode was better than paste-coating because of its high current density. IMPS showed a higher electron transfer rate for electrophoretic electrode, but the electron lifetime is shorter by the IMVS analyzing. In EIS testing, the charge collection efficiency and diffusion length were 91% and 43µm, respectively.
The dense packing caused the much more dye to absorb, decreased the path for electron transfer, so electrophoretic electrode has higher charge collection efficiency, current density, and lower open-circuit voltage.
1.M.Grätzel, Nature, 414, 338, (2001).
2.C. Y. Chen, M. K. Wang, J. Y. Li , N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin, M. Gratzel, ACS nano, 3, 3103, (2009)
3.I. Zhitomirsky, Adv. Colloid Interface Sci., 97, 279, (2002).
4.D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, J. Phys. Chem. B, 104, 2053, (2000).
5.D. Matthews, P. Infelta, M. Grätzel, Sol. Energy Mater. Sol. Cells, 44, 119, (1996).
6.M. Grätzel, J. Photochem. Photobio. A, 164, 3, (2004).
7.A. Hagfeldt, M. Grätzel, Chem. Rev., 95, 49, (1995)
8.K. Kalyanasundaram, M. Grätzel, Coord. Chem. rev., 177, 347, (1998).
9.N.G. Park, J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B, 104, 8989, (2000).
10.C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, J. Am. Ceram. Soc., 80, 3157, (1997).
11.M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc., 115, 6382, (1993).
12.G. P. Smestad, M. Grätzel, J. Chem. Educ., 75, 752, (1998).
13.M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc., 123, 1613, (2001).
14.M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Gratzel, J. Am. Chem. Soc., 127, 16835, (2005).
15.G. J. Meyer, J. Chem. Educ., 74, 652, (1997).
16.S. Cherian, C. C. Wamser, J. Phys. Chem. B, 104, 3624, (2000).
17.S. Y. Huang, G. Schlichthorl, A.J. Nozik, J. Phys. Chem. B, 101, 2576, (1997).
18.A. Hauch, R. Kern, J. Ferber, “Charactisation of the Electrolyte-solid interfaces of Dye-Sensitized Solar Cell by Means of Impedance Spectroscopy”, 2nd World Conference, Vienna, European Communities, (1998).
19.N. Papageorgiou, M. Grätzel, P. P. Infelta, Sol. Energy Mater. Sol. Cells, 44, 405, (1996).
20.U. Bach, D. Lupo, P. Comte, Nature, 395, 583, (1998).
21.P. Wang, S. M. Zakeeruddin, I. Exnarb, M. Grätzel, Chem. Commun., 2972, (2002).
22.E. Stathatos, P. Lianos, Chem. Mater., 15, 1825, (2003).
23.N. Papageorgiou, W. F. Maier, M. Grätzel, J. Electrochem. Soc., 144, 99, (1996).
24.A. Kay, M. Grätzel, Sol. Energy Mater. Sol. Cells, 44, 99, (1996).
25.L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J.Shaw, and I, Uhlendor, J. Phys. Chem. B, 101, 10281, (1997).
26.I. Zhitomirsky, L. Gal-Or, in: N.B. Dahotre, T.S. Sudarshan (Eds.), Intermetallic and Ceramic Coatings, Marcel Dekker Inc, New York, 1999, chapter 3.
27.I. Zhitomirsky, Mater. Lett.,33, 305, (1998).
28.J. A. Lewis, J. Am. Ceram. Soc., 83, 2341, (2000).
29.D. Matthews, A. Kay, M. Gratzel, Aust. J. Chem., 47, 1869, (1994).
30.K. Fujimura, S. Yoshikado, Key Eng. Mater., 248, 133, (2003).
31.I. Zhitomirsky, Adv. Colloid Interface Sci., 97, 279, (2002).
32.J. Tabellion, R. Clasen, J. Mater. Sci., 39, 803, (2004).
33.T. Miyasaka, Y. Kijitori, J. Electrochem. Soc., 151 (11) , A1767, (2004).
34.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir, 14, 3160, (1998).
35.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater., 11, 1307, (1999).
36.L. Grinis, Journal of Photochemistry and Photobiology A, 198, 52, (2008)
37.B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction”, 3rd ed., Prentice, (2001).
38.C. Kittel, “Introduction to Solid State Physics”, Wiley, 4th ed., (1971).
39.M. Yan, F. Chen, J. Zhang, M. Anpo, J. Phys. Chem. B, 109, 8673, (2005).
40.S. Brunaller, P. H. Emmett, E. Teller, J. Am. Chem. Soc., 60, 390, (1938).
41.E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc., 73, 373, (1951).
42.M. Kruk, M. Jaroniec, J. Phys. Chem. B, 104, 7960, (2000).
43.J. Kru1ger, R. Plass, M. Gratzel, P. J. Cameron, L. M. Peter, J. Phys. Chem. B, 107, 7536, (2003).
44.F. Febregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, M. Grätzel, J. Phys. Chem. C, 111, 6550, (2007).
45.M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, J. Phys. Chem. B, 110 , 13872, (2006).
46.R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Electrochim. Atca, 47, 4213, (2002).
47.C. C. Tsai, H. S. Teng, Chem. Mater., 18, 367, (2006)
48.蔡建成, “由水熱處理二氧化鈦所合成奈米管之結構分析”, 國立成功大學化學工程研究所碩士論文, (2005).
49.S. Dor, S. Ruhle, A. Ofir, M. Adler, L. Grinis, A. Zaban, Colloids and Surfaces A: Physicochem., 342, 70, (2009).
50.A. M. Peiro, E. Brillas, J. Peral, X. Domenech, J. A. Ayllon, J. Mater. Chem., 12 , 2769, (2002).
51.P. T. Hsiao, Y. L. Tung, H. S. Teng, J. Phys. Chem. C, 114, 6762, (2010)
52.A. J. Frank, N. Kopidakis, J. van de Lagemaat, Coordination Chemistry Reviews, 248, 1165, (2004).
53.N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B, 107, 11307, (2003)
54.L. M. Peter, J. Phys. Chem. C, 111, 6601, (2007).
55.Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, J. Phys. Chem. B, 110, 50, (2006).
56.Z. Y. Wu, G. Ouvrard, P. Gressier, C. R. Natoli, “Ti and O K edges for Titanium Oxides by Multiple Scattering Calculations: Comparison to XAS and EELS Spectra”, Phys. Rev. B, 55, 10382, (1997).
校內:2020-12-31公開