| 研究生: |
鄭乃福 Cheng, Nai-Fu |
|---|---|
| 論文名稱: |
以分子動力學模擬研究具有氧缺陷之鈦酸鉛電域形貌 Molecular Dynamics Simulations of Domain Pattern for Oxygen Deficient Lead Titanate |
| 指導教授: |
許文東
Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 分子動力學模擬 、氧空缺與電域壁之作用 、模擬退火法 |
| 外文關鍵詞: | molecular dynamics simulations, oxygen vacancy effect on domain pattern, simulated annealing algorithm |
| 相關次數: | 點閱:152 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鐵電材料當中的鈣鈦礦結構氧化物由於被廣泛應用於致動器以及隨機存取記憶體,因此其結構以及電域壁動力學在近年引起了大量的研究。而儘管電域壁動力學不論在模擬或實驗上都已研究多年,仍有許多複雜的電域壁形貌現象尚未釐清。
鐵電材料在合成時會有許多種缺陷被引入,而其中氧空缺不論在實驗或模擬上已確認對於鐵電性質有極大的影響,例如Vanderbilt等人在2003年以第一原理模擬研究得出氧空缺比較容易聚集在180度電域壁附近,確認在實驗上氧空缺扮演阻礙電域壁移動的角色。而如今分子動力學模擬的發展提供了我們一個研究動力學絕佳的方法,可以觀察到實驗上難以看到的ps ~ ms的極化翻轉,因此本研究使用分子動力學研究存在氧空缺的鈦酸鉛電域壁動力學,據我們所知之前相關的動力學研究都是使用較大尺度的模擬方法(Potts model, Finite element method, Phase field model),其能較快速地得到定性的結果,然而忽略了原子級的作用使得其結果也有待商榷,而分子動力學模擬由於具有原子級的資訊,因此預期可以得到較為精準的模擬。
本研究為了將文獻中所提出之Bond valence model延伸至可以模擬具有缺陷的系統,因此透過退火模擬演算法自行擬合出新的參數,並透過多重的驗證確認擬合出的參數是否適當,結果顯示自行擬合出之參數可以再現文獻中第一原理模擬得出之電中性氧空缺缺陷生成能以及空缺周圍之極化趨勢。接著利用自行擬合之參數進行電域壁之模擬以及氧空缺與電域壁作用之探討。
The purpose of this paper is to reach more insight into micro-scale properties of ferroelectric materials using molecular dynamics simulation, in particular the interactions between domain wall and oxygen vacancy. To investigate domain wall-oxygen vacancy interaction, an oxygen deficient PbTiO3 ferroelectric system consisting of a domain wall and an oxygen vacancy is simulated by bond valence model. Bond valence model has been proven that it could simulate ferroelectric properties very well. However, in this study the parameter is reparameterized to be able to simulate oxygen deficient system.
1. S.R. Phillpot, S.B. Sinnott, and A. Asthagiri, Atomic-level simulation of ferroelectricity in oxides: Current status and opportunities. Annu. Rev. Mater. Res., 2007. 37: p. 239-270.
2. Z. Alahmed and H. Fu, First-principles determination of chemical potentials and vacancy formation energies in Pb Ti O 3 and Ba Ti O 3. Physical Review B, 2007. 76(22): p. 224101.
3. M. All, simulations made use of the LAMMPS code described by SJ Plimpton. J. Comput. Phys, 1995. 117(1).
4. V.I. Anisimov, F. Aryasetiawan, and A. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method. Journal of Physics: Condensed Matter, 1997. 9(4): p. 767.
5. P.E. Blöchl, Projector augmented-wave method. Physical Review B, 1994. 50(24): p. 17953.
6. A. Chandrasekaran, X.-K. Wei, L. Feigl, D. Damjanovic, N. Setter, and N. Marzari, Asymmetric structure of 90∘ domain walls and interactions with defects in PbTiO 3. Physical Review B, 2016. 93(14): p. 144102.
7. D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Reports on Progress in Physics, 1998. 61(9): p. 1267.
8. Y. Duan, G. Tang, C. Chen, T. Lu, and Z. Wu, First-principles investigations of ferroelectricity and piezoelectricity in BaTiO 3/PbTiO 3 superlattices. Physical Review B, 2012. 85(5): p. 054108.
9. M. Fontana, H. Idrissi, G. Kugel, and K. Wojcik, Raman spectrum in PbTiO3 re-examined: dynamics of the soft phonon and the central peak. Journal of Physics: Condensed Matter, 1991. 3(44): p. 8695.
10. J. Guyonnet, Domain Walls in Ferroelectric Materials, in Ferroelectric Domain Walls. 2014, Springer. p. 7-24.
11. L. He and D. Vanderbilt, First-principles study of oxygen-vacancy pinning of domain walls in PbTiO 3. Physical Review B, 2003. 68(13): p. 134103.
12. G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006. 36(3): p. 354-360.
13. P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Physical review, 1964. 136(3B): p. B864.
14. L. Hong, A. Soh, Q. Du, and J. Li, Interaction of O vacancies and domain structures in single crystal Ba Ti O 3: Two-dimensional ferroelectric model. Physical Review B, 2008. 77(9): p. 094104.
15. M.C. Kim, First-principles Predictions of Structures and Piezoelectric Properties of PbTiO3 Single Crystal. TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2016. 17(1): p. 29-32.
16. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Optimization by simulated annealing. science, 1983. 220(4598): p. 671-680.
17. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133.
18. G. Kresse and J. Furthmüller, Software VASP, vienna (1999). Phys. Rev. B, 1996. 54(11): p. 169.
19. K.T. Li and V.C. Lo, Simulation of oxygen vacancy induced phenomena in ferroelectric thin films. Journal of applied physics, 2005. 97(3): p. 034107.
20. S. Liu, I. Grinberg, H. Takenaka, and A.M. Rappe, Reinterpretation of the bond-valence model with bond-order formalism: An improved bond-valence-based interatomic potential for PbTiO3. Physical Review B, 2013. 88(10).
21. W.J. Merz, Domain Formation and Domain Wall Motions in Ferroelectric BaTi O 3 Single Crystals. Physical Review, 1954. 95(3): p. 690.
22. B. Meyer and D. Vanderbilt, Ab initio study of ferroelectric domain walls in PbTiO 3. Physical Review B, 2002. 65(10): p. 104111.
23. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble. Molecular physics, 1984. 52(2): p. 255-268.
24. C. Park and D. Chadi, Microscopic study of oxygen-vacancy defects in ferroelectric perovskites. Physical Review B, 1998. 57(22): p. R13961.
25. J.P. Perdew and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical review B, 1986. 33(12): p. 8800.
26. Y.-H. Shin, V.R. Cooper, I. Grinberg, and A.M. Rappe, Development of a bond-valence molecular-dynamics model for complex oxides. Physical Review B, 2005. 71(5): p. 054104.
27. Y.-H. Shin, I. Grinberg, I.-W. Chen, and A.M. Rappe, Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature, 2007. 449(7164): p. 881-884.
28. Y.-H. Shin, J.-Y. Son, B.-J. Lee, I. Grinberg, and A.M. Rappe, Order–disorder character of PbTiO3. Journal of Physics: Condensed Matter, 2008. 20(1): p. 015224.
29. W.C. Swope, H.C. Andersen, P.H. Berens, and K.R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. The Journal of Chemical Physics, 1982. 76(1): p. 637-649.
30. A. Tagantsev, I. Stolichnov, E. Colla, and N. Setter, Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features. Journal of Applied Physics, 2001. 90(3): p. 1387-1402.
31. L. Verlet, Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, 1967. 159(1): p. 98.
32. W. Warren, D. Dimos, B. Tuttle, G. Pike, R. Schwartz, P. Clews, and D. McIntyre, Polarization suppression in Pb (Zr, Ti) O3 thin films. Journal of applied physics, 1995. 77(12): p. 6695-6702.