| 研究生: |
陳國勝 Chen, Kuo-Shen |
|---|---|
| 論文名稱: |
化學溶液沉積法製備BiFe1-xMnxO3(x=0,0.05,0.2,0.3)薄膜及其特性研究 Chemical solution deposition and characterization of BiFe1-xMnxO3(x=0,0.05,0.2,0.3)thin film |
| 指導教授: |
齊孝定
Qi, Xiao-Ding |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | BiFeO3 、鐵磁性 |
| 外文關鍵詞: | BiFeO3, ferromagnetism |
| 相關次數: | 點閱:78 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是以化學沉積法製備BiFe1-xMnxO3(x=0、0.05、0.2、0.3、0.4、0.5)薄膜,成長於矽及鎳酸鑭/矽基板之上。BiFeO3為一複鐵式材料,具有強鐵電性以及反鐵磁性,而另一複鐵式材料BiMnO3具有弱鐵電性以及鐵磁性。由於Fe3+與Mn3+離子半徑非常接近,固本實驗企圖將BiFeO3與BiMnO3互溶,研究BiFe1-xMnxO3晶體結構、電性、磁性隨Mn濃度增加而帶來的改變。
本實驗利用X光繞射、X光電子能譜、高解析掃描電子顯微鏡、原子力顯微鏡、以及超導量子干涉震動磁量儀,分別對BiFe1-xMnxO3薄膜的晶體結構、元素價態、顯微結構、元素比例、表面粗糙度、以及磁性質進行分析,同時還對BiFe1-xMnxO3薄膜的漏電流、電滯曲線、介電性質進行了測量和分析。由實驗結果可發現,BiFeO3摻雜錳的最大固溶極限約為20%,當摻雜量再升高時其雜相就會開始出現。而由顯微結構可以發現,其晶粒大小會隨著摻雜而變小,表面粗糙度亦會因為摻雜而下降。成分分析發現,鉍揮發量隨著摻雜錳會有增多的趨勢。在電性方面,摻雜5%錳且退火10分鐘的薄膜其漏電流、介電性質都能獲得改善。磁性上雖然在摻雜5%錳時磁化量上升,但詳細分析發現此為雜相所造成,因此摻雜錳至溶度20~30%無法改變鐵酸鉍的反鐵磁性。
In this study, thin films of BiFe1-xMnxO3(x=0~0.5) were prepared on the Si and LNO/Si substrates by the chemical solution deposition method. BiFeO3 is a multiferroic material which is simultaneously ferroelectric and antiferromagnetic, whereas another multiferroic BiMnO3 shows both a weak ferroelectricity and a fairly strong ferromagnetism. However, the atomic radius of Fe3+ and Mn3+ are very close. The aim of the current work was to mix BiFeO3 with BiMnO3 and then study the changes of crystal structure as well as the electrical and magnetic properties of BiFe1-xMnxO3 with the increase of Mn content.
The composition, phase purity, microstructure, valence states, and magnetic properties of the prepared BiFe1-xMnxO3 thin films were characterized by a wide range of techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution scanning electron microscopy, atomic force microscopy, and the SQUID magnetometry. Extensive measurements on the ferroelectric properties, leakage currents, and dielectric responses were also carried out.
The results showed the solid solution limit of BiFe1-xMnxO3 was around 20%, above which secondary phases appeared. The grain size of BiFe1-xMnxO3 became apparently smaller compared to the un-doped BiFeO3 and the surface roughness of the doped films was also reduced. The 5%Mn-doped films with the annealing time of 10 minutes showed a lowest leakage current, as well as improved dielectric property. Although the 5%Mn-doped films showed a greatly increased magnetization, detailed analyses found that the magnetic moment was resulted from secondary phase. Therefore, doping up to 20~30% Mn into BiFeO3 was unable to change its antiferromagnetic order.
[1] H. P. McAdams, R. Acklin, T. Blake, X. H. Du, J. Eliason, J. Fong, W. F. Kraus, D. Liu, S. Madan, T. Moise, S. Natarajan, N.Qian, Y. Qiu, K. A. Remack, J. Rodriguez, J. Roscher, A. Seshadri, and S. R. Summerfelt, J. Solid-State Circuits 39 (2004) 667.
[2] F. Sugawara, S. Iiida, Y. Syono, S. Akimoto, J. Phys. Soc. Jpn. 25 (1968) 1553.
[3] A. Moreira dos Santos, A.K. Cheetham, T. Atou, Y. Syono, Y. Yamaguchi, K. Ohoyama, H. Chiba, C.N.R. Rao, Phys. Rev. B 66 (2002) 64425.
[4] T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Phys. Rev. B 67 (2003) 180401.
[5] C.J. Brinker, K.D. Keefer, D.W. Schaefer, R.A. Assink, B.D. Kay, C.S. Ashley, J. Non-Cryst. Solids 63 (1984) 45.
[6] H. Dislich, J. Non-Cryst. Solids 80 (1986) 115.
[7] K.D. Budd, S.K. Dey, D.A. Payne, Brit. Ceram. Soc. Proc. 36 (1985) 107.
[8] S.K. Dey, K.D. Budd, D.A. Payne, IEEE Trans. UFFC 35 (1988) 80.
[9] C. J. Brinker and G. W. Schererz, Sol–Gel Science, Academic Press, San Diego (1990).
[10] R.W. Schwartz, T. Schneller, R. Waser, C.R. Chimie 7 (2004) 433.
[11] 邱碧秀,“電子陶瓷材料",徐氏基金會,Ch3,(1988).
[12] 劉國雄,“工程材料科學",全華科技,Ch8,(1996).
[13] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, John Wiley and Sons, New York (1976) 768.
[14] 張煦,李學養,“磁性物理學",聯經出版社,(1982).
[15] M. Ohring, The Materials Science of Thin Films, Academic Press, New York (1992).
[16] D. Ivanova, M Caron, L. Ouellet, S Blain, N. Hendrick, J. Currie, J. Appl. Phys. 77 (1995) 2666.
[17] S. Wolf and Richard N. Tauber, Silicon Processing for the VLSI Era, Lattice Press, CA Sunset Beach (1986) 384.
[18] A.J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties and Applications, Chapman & Hall London (1990) 52.
[19] K. Sreenivas, I. Reaney, T. Maeder, and N. Setter, J.Appl. Phys. 75 (1994) 232.
[20] R. Bruchhaus, D. Pitzer, O. Eibl, V. Scheithauer, and W. Hoesler, Mater. Res. Soc. Symp. Proc. 243 (1992) 123.
[21] T. Ogawa, S. Shindou, A. Senda, and T. Kasanami, Mater. Res. Soc. Symp. Proc. 243 (1992) 93.
[22] P. Revesz, J. Li, N. Szabo Jr., J. W. Mayer, D. Caudillo, and E. R. Myers, Mater. Res. Soc. Symp. Proc. 243 (1992) 101.
[23] S. A. Mayers and E. R. Mayers, Mater. Res. Soc. Symp. Proc. 243 (1992) 107.
[24] D. Barrow, C. V. R. V. Kumar, R. Pasual, and M. Sayer, Mater. Res. Soc. Symp. Proc. 243 (1992) 113.
[25] J. Wang, Deposition and Characterization of Multiferroic BiFeO3 Thin Films, PhD dissertation, University of Maryland, Department of Materials Science and Engineering (2005).
[26] F. Kubel and H. Schmid, Acta Crystallogr., Sect. B: Struct. Sci 46 (1990) 698.
[27] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299 (2003) 1719.
[28] J. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett. 84 (2004) 5261.
[29] K. Y. Yun, Dan Richinschi, Takeshi Kanashima, Minoru Noda and Masanori Okuyama, Jpn. J. Appl. Phys. 43 (2004) 647.
[30] M. I. Morozov, N. A. Lomanova, and V. V. Gusarov, Russ. J. Gen. Chem. 73 (2003) 1676.
[31] C. T. Munoz, J. P. Rivera, A. Monnier and H. Schmid, Jpn. J. Appl. Phys. 24 (1895) 1051.
[32] Y. P. Wamg, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu and Z. G. Liu, Appl. Phys. Lett 84 (2004)1731.
[33] V. R. Palkar, K. G. Kumara, S. K. Malik, Appl. Phys. Lett. 84 (2004) 2856.
[34] K. Y. Yun, M. Noda and M. Okuyama, Appl. Phys. Lett. 83 (2003) 3981.
[35] R. Ueno, S. Okaura, H. Funakubo and K. Saito, Jpn. J. Appl. Phys. 44 (2005) 1231.
[36] Y. H. Lee, J. M. Wu, Y. C. Chen, Y. H. Lu and H. N. Lin, Electrochem. Solid-State Lett. 8 (2005) 43.
[37] H. S. Gu, J. M. Xue, X. Gao, J. Wang, Mater. Chem. Phys.75 (2002) 105.
[38] K. Ueda, H Tabat and T. Kawai, Appl. Phys. Lett 75 (1999) 555.
[39] C. Cheon, J. Seog, K. Pyung, W. Jang, Jpn. J. Appl. Phys. 41 (2002) 6777.
[40] I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C: Solid State Phys. 15 (1982) 4835.
[41] A. Kadomtseva, Yu. Popov, G. Vorobev, and A. Zvezdin, Physica B 211 (1995) 327.
[42] J. R. Teague, R. Gerson, and W. J. James, Solid State Commun. 8 (1970) 1073.
[43] S. K. Singh, Y. K. Kim, H. Funakubo and H. Ishiwara, Appl. Phys. Lett. 88 (2006) 162904.
[44] A. Z. Simões, A. H. M. Gonzalez, L. S. Cavalcante, C. S. Riccardi, E. Longo, J. Appl. Phys. 101 (2007) 074108.
[45] Sushil K. Singh and Hiroshi Ishiwara, Jpn. J. Appl. Phys. 44 (2005) 734.
[46] Y. Wang and C. W. Nan, J. Appl. Phys. 103 (2008) 024103.
[47] J. W. Liou and B.S. Chiou, J. Am. Ceram. Soc. 80 (1997) 3093.