| 研究生: |
陳柏松 Sung, Po |
|---|---|
| 論文名稱: |
經氯氣處理氮化鎵元件之特性研究 Investigation of performance for chlorine-treated GaN-based device |
| 指導教授: |
李清庭
Lee, Ching Ting |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 氯氣 、氮化鎵 |
| 外文關鍵詞: | GaN, chlorination |
| 相關次數: | 點閱:63 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,將利用化學分析電子光譜儀研究氯氣處理對氮化鎵試片表面的影響。此研究過程為將氮化鎵試片置於陽極鉑電極下方並放入鹽酸電解液中,電解時陽極鉑電極會產生氯氣並和有機金屬氣相磊晶機台成長出來的氮化鎵表面之鎵原子懸鍵反應生成氯化鎵,此產物容易溶解於化學溶液中進而在氮化鎵表面形成鎵原子位置的空缺。此外,電解所生成的氯氣溶於水後形成次氯酸,而次氯酸會氧化氮化鎵表面而形成氧化鎵,因此氯氣處理所生成的氯化鎵和氧化鎵產物將分別會在氮化鎵表面形成鎵原子位置的空缺及減少氮原子位置的空缺。利用氯氣處理法將可提高氮化鎵表面電洞濃度並且獲得較佳的鎳金/p型氮化鎵歐姆接觸特性,其特徵電阻值為4.8×10-6 Ω-cm2。利用此方法應用於氮化鎵發光二極體不僅可改善其元件光電特性,包括操作電壓在20 mA時從3.3伏特降至3伏特、光輸出功率在300 mA時可增加約1.25倍,並可以減少氮化鎵的表面態密度進而降低漏電流的產生。將氯氣處理應用於n型氮化鎵可獲得較高蕭特基位障和較佳之理想因子,這是由於氯氣處理可以有效減少鎵原子之懸鍵並形成氧化鎵鈍化表面態,所以經氯氣處理過後之氮化鎵試片具有較強的光激發光譜及較長的載子生命週期。而此外,將氯氣處理應用於蕭特基型光檢測器可以獲得較低之漏電流及較理想的量子效應和內部增益的乘積,在操作波長330 nm、操作電壓-10伏特時其量子效應和內部增益的乘積在未氯氣處理和氯氣處理分別為650%和100%。
The surface of a chlorine-treated GaN semiconductor was analyzed using X-ray photoelectron spectroscopy to investigate the function and mechanism of oxidation. The grown sample was placed in an electrolytic solution (HCl(aq)) underneath a Pt anodic electrode. The produced chlorine adhered and reacted with the GaN sample. The Ga dangling bonds of the Ga-face GaN surface grown using the MOCVD system reacted with chlorine to form GaClx. The GaClx can be easily dissolved in the chemical solvent to induce Ga vacancies on the surface of the GaN sample. The chlorine dissolves in the water to form HClO, which in turn oxidizes GaN and enhances the formation of GaOx on the GaN surface. The chlorine-treated GaN sample induces more Ga vacancies and decreases the N vacancies due to the formation of GaClx and GaOx, respectively. Therefore, a relatively higher Ohmic performance with a specific contact resistance of 4.8×10-6 Ω-cm2 can be obtained for Ni/Au metal contact patterned on the chlorine-treated p-type GaN via the enhanced hole concentration.
The electrical and optical performance of multiple-quantum-well (MQW) InGaN/GaN light-emitting diodes was improved by using chlorine to treat the surface of the p-type GaN layer. Compared to the untreated sample, the current-voltage (I-V) characteristics show that the forward voltage of the chlorine-treated MQW InGaN/GaN LEDs is decreased from 3.3 V to 3.0 V at 20 mA and the light output power is increased 1.25 times at 300 mA. The reverse leakage current of the chlorine-treated MQW InGaN/GaN LEDs was also significantly decreased due to the passivation of surface states by chlorination treatment of the p-type GaN layer. The Schottky barrier height and ideality factor of the chlorine-treated GaN Schottky diodes were improved.
The photoluminescence (PL) intensity and carrier lifetime of the chlorine-treated n-type GaN increased by using PL and time-resolved PL measurements. The improved performance of the chlorine-treated GaN Schottky diodes can be attributed to the reduction of surface states. The decrease of surface states resulted from the reduction of Ga dangling bonds and the occupation of N vacancies due to the passivation function of the GaOx formation on the surface of n-type GaN using chlorination treatment. The products of quantum efficiency and internal gain of the GaN Schottky UV-photodetector without and with chlorination treatment under a reverse voltage of -10 V at a wavelength of 330 nm are 650% and 100%, respectively.
CHAPTER 1
[1] T. Murata, M. Hikita, Y. Hirose, Y. Uemoto, K. Inoue, T. Tanaka and D. Ueda, “Source resistance reduction of AlGaN-GaN HFETs with novel superlattice cap layer”, IEEE Trans. Electron. Devices,52, 1042 (2005).
[2] W. Huang, T. Khan and T. P. Chow, “Enhancement-Mode n-Channel GaN MOSFETs on p and n-GaN/Sapphire Substrates”, IEEE Electron Device Lett., 27, 796 (2006).
[3] C. T. Lee, H. W. Chen and H. Y. Lee, “Metal–oxide–semiconductor devices using Ga2O3 dielectrics on n-type GaN “, Appl. Phys. Lett., 82, 4304 (2003).
[4] C. T. Lee, H. Y. Lee and H. W. Chen, “GaN MOS Device Using SiO2–Ga2O3 Insulator Grown by Photoelectrochemical Oxidation Method”, IEEE Electron Device Lett., , 24, 54 (2003).
[5] D. J. Rogers, F. H. Teherani, A. Yasan, K. Minder, P. Kung and M. Razeghi, “Electroluminescence at 375 nm from a ZnO/GaN:Mg/c-Al2O3 heterojunction light emitting diode” Appl. Phys. Lett., 88, 141918 (2006).
[6] S. F. Soares, “Photoconductive Gain in a Schottky Barrier Photodiode”, Jpn. J. Appl. Phys., 31, 210 (1992)
[7] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi and J. M. Tsai, “GaN metal-semiconductor-metal photodetectors with low-temperature-GaN cap layers and ITO metal contacts”, IEEE Electron Device Lett., 24, 212 ( 2003).
[8] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo and M. Umeno, “Back-Illuminated GaN Metal-Semiconductor-Metal UV Photodetector with High Internal Gain”, Jpn. J. Appl. Phy., 40, L505 ( 2001).
[9] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. J. Su, S. J. Chang and G. C. Chi, “Low-operation voltage of InGaN-GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer”, IEEE Electron Device Lett., 22, 460 (2001).
[10] C. T. Lee, U. Z. Yang, C. S. Lee and P. S. Chen, “White Light Emission of Monolithic Carbon-Implanted InGaN–GaN Light-Emitting Diodes”, IEEE Photon. Technol. Lett., 18, 2029 (2006).
[11] R. J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors”, Appl. Phys. Lett., 88, 101104 (2006).
[12] J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang and Y. K. Su, “White-light emission from InGaN-GaN multiquantum-well light-emitting diodes with Si and Zn codoped active well layer”, IEEE Photon. Technol. Lett., 14, 450 (2002).
[13] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai,G. C. Chi and R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors”, IEEE Photon. Technol. Lett., 15,18 (2003).
[14] J. K. Park, M. A. Lim, C. H. Kim,H. D. Park, J. T. Park and S. Y. Choi, “White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties”, Appl. Phys. Lett., 82, 683 (2003).
[15] S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren, “GaN: Processing, defects, and devices”, J. Appl. Phys., 86, 1 (1999).
[16] K. A. Ricket, A.B. Ellis, F. J. Himpsel, J. Sun and T. F. Kuech, “n-GaN surface treatments for metal contacts studied via x-ray photoemission spectroscopy”, Appl. Phys. Lett., 80, 204 (2002).
[17] W. Mönch, Semiconductor Surfaces and Interfaces, 2nd ed. (Springer, Berlin, 1993).
[18]F. Bechstedt and R. Enderlein, Semiconductor Surfaces and Interfaces: Their Atomic and Electronic Structures (Acadamie, Berlin, 1988).
[19]J. K. Kim, J. L. Lee, J. W. Lee, Y. J. Park and T. Kim, “Effect of surface treatment by (NH4)2Sx solution on the reduction of ohmic contact resistivity of p-type GaN”, J. Vac. Sci. Technol., B17, 497 (1999).
[20] J. K. Kim, J.L. Lee, J. W. Lee, H. E. Shin, Y. J. Park and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment”, Appl. Phys. Lett., 73, 2953 (1998).
[21]C. S. Lee, Y. J. Lin and C. T. Lee, “Investigation of oxidation mechanism for ohmic formation in Ni/Au contacts to p-type GaN layers”, Appl. Phys. Lett., 79, 3815 (2001).
[22] J. D. Guo, F. M. Pan, M. S. Feng, R. J. Guo P. F. Chou and C. Y. Chang, “Schottky contact and the thermal stability of Ni on n-type GaN”, J. Appl. Phys., 80, 1623 (1996).
[23] A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang and I.Adesida, “Schottky barrier properties of various metals on n-type GaN”, Semicond. Sci.Technol., 11, 1464 (1996).
[24] J. Sun, K. A. Rickert, J. M. Redwing A. B. Ellis, F. J. Himpsel and T. F. Kuech, “p-GaN surface treatments for metal contacts”, Appl. Phys. Lett., 76, 415 (2000).
[25] K. A. Rickert, A. B. Ellis, F. J. Himpsel, J. Sun and T. F. Kuech, “n-GaN surface treatments for metal contacts studied via x-ray photoemission spectroscopy”, Appl. Phys. Lett., 80, 204 (2002).
[26] S. H. Su, C. C. Hou, C. T. Tseng, M. Yokoyama and S. M. Chen, “Reduction of ohmic contact on p-GaN with surface treatment using Cl2 inductively coupled plasma”, J. Vac. Sci. Technol. B, 22, 971 (2004)
[27] C. T. Lee, Y. J. Lin, and D. S. Liu, “Schottky barrier height and surface state density of Ni/Au contacts to (NH4)2Sx-treated n-type GaN”, Appl. Phys. Lett., 79, 2573 (2001).
CHAPTER 3
[1] P. S. Chen, T. H. Lee, L. W. Lai and C. T. Lee, “Schottky mechanism for Ni/Au contact with chlorine-treated n-type GaN layer”, J. Appl. Phys., 101, 024507 (2006).
[2] D. R. Lide and H. P. R. Frederikse, Eds. CRC Handbook of Chemistry and Physics, 75th ed. CRC Press, Boca Raton, FL. 1995.
[3] C. S. Lee, Y. J. Lin and C. T. Lee, Appl. Phys. Lett., “Investigation of oxidation mechanism for ohmic formation in Ni/Au contacts to p-type GaN layers”, 79, 3815 (2001).
[4] P. S. Chen, C. T. Lee, “Investigation of Ohmic mechanism for chlorine-treated p-type GaN using x-ray photoelectron spectroscopy”, J. Appl. Phys., 100, 044510 (2006).
[5] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, “Photoenhanced wet oxidation of gallium nitride”, Appl. Phys. Lett., 76, 511 (2000).
[6] O. Ambacher, “Growth and applications of Group III-nitrides”, J. Phys. D: Appl. Phys., 31, 2653 (1998).
[7] C. T. Lee and H. W. Kao, “Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN”, Appl. Phys. Lett., 76, 2364 (2000).
CHAPTER 4
[1] X. A. Cao, S. J. Pearton, G. Dang, A. P. Zhang, F. Ren and J. M. V. Hove, “Effects of interfacial oxides on Schottky barrier contacts to n- and p-type GaN”, Appl. Phys. Lett., 75, 4130 (1999).
[2] C. S. Lee, Y. J. Lin and C. T. Lee, ““Investigation of oxidation mechanism for ohmic formation in Ni/Au contacts to p-type GaN layers”, Appl. Phys. Lett., 79, 3815 (2001).
[3] J. Sun, K. A. Rickert, J. M. Redwing, A. B. Ellis, F. J. Himpsel and T. F. Kuech, “p-GaN surface treatments for metal contacts”, Appl. Phys. Lett., 76, 415 (2000).
[4] Y. Mizokawa, H. Iwasaki, R. Nishitani and S. Nakamura, “Esca studies of Ga, As, GaAs, Ga2O3, As2O3 and As2O5” J. Electron. Spectrosc. Relat. Phenom., 14, 129 (1978).
[5] J. Hedman and N. Martensson, “Gallium nitride studied by electron spectroscopy”, N. Phys. Scr., 22, 176 (1980).
[6] H. Iwakuro, C. Tastuyama and S. Ichimura, “XPS and AES Studies on the Oxidation of Layered Semiconductor GaSe “, Jpn. J. Appl. Phys. 21, 94 (1982).
[7] A. R. Smith, R. M. Feenstra, D. W. Greve, J. Neugebauer and J. E. Northrup, “Reconstructions of the GaN(0001 ) Surface” Phys. Rev. Lett., 79, 3934 (1997).
[8]C. S. Lee, Y. J. Lin and C. T. Lee, ““Investigation of oxidation mechanism for ohmic formation in Ni/Au contacts to p-type GaN layers”, Appl. Phys. Lett., 79, 3815 (2001).
[9] K. Kuriyama, T. Tsunoda, N. Hayashi and Y. Takahashi. Nucl. Instrum. “Characterization of GaN synthesized in N-ion implanted GaAs” Methods Phys. Res. B, 148, 432 (1999).
[10] Y. Inoue, M. Nomiya and O.Takai, “Physical Properties of Reactive Sputtered Tin Nitride Thin Films”, Vacuum, 51, 673 (1998).
[11] J. P. Zhang, D. Z. Sun, X. B. Li, X. L. Wang, M. Y. Kong, Y. P. Zeng, J. M. Li and L. Y. Lin, “Electrical properties of GaN deposited on nitridated sapphire by molecular beam epitaxy using NH3 cracked on the growing surface”, J. Cryst. Growth, 201/202, 429 (1999).
[12] 汪建民,“材料分析” 中國材料科學學會 (1998)
[13] S. J. Cho, S. Dogan, S. Sabuktagin, M. A. Reshchikov, D. K. Johnstone, and H. Morkoc, “Surface band bending in as-grown and plasma-treated n-type GaN films using surface potential electric force microscopy”, Appl. Phys. Lett., 84, 3070 (2004).
[14]D. K. Schroder, Semiconductor Material and Devices Characterization (Wiley, New York, 1990).
[15] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing,
defects, and devices”, J. Appl. Phys., 86, 1(1999).
[16] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. J. Su, S. J. Chang and G. C. Chi, “Low-operation voltage of InGaN-GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer”, IEEE Electron. Device Lett., 22, 460 (2001).
[17] J. Cho, C. Sone, Y. Park and E. Yoon, “Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift”, phys. Stat. Sol. (a),202, 1869 (2005)
[18] M. Sawada, T. Sawada, Y. Yamagata, K. Imai, H. Kimura, M. Yoshino, K. Iizuka, and H. Tomozawa, “Electrical characterization of n-GaN Schottky and PCVD-SiO2/n-GaN interfaces”, J. Crystal Growth, 189/190, 706 (1998).
[19] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo and M. Umeno, ““Back-Illuminated GaN Metal-Semiconductor-Metal UV Photodetector with High Internal Gain”, Jpn. J. Appl. Phys., 40, L505 (2001)
[20] K. A. Ricket, A.B. Ellis, F. J. Himpsel, J. Sun and T. F. Kuech, “n-GaN surface treatments for metal contacts studied via x-ray photoemission spectroscopy”, Appl. Phys. Lett., 80, 204 (2002).
[21] E. H. Nicollian, and A .Goetzberger, “The Si-SiO2 interface electrical properties as determined by the metal-insulator-silicon conductance technique”, Bell Sys. Tech., 46, 1055 (1967).
[22] A. Singh, “ Characterization of interface state at Ni/nCDF2 Schottky barrier type diodes and the effect of CDF2 surface preparation”, Solid-State Electron., 28, 223 (1985).
[23] A. F. Özdemir, A. Türüt, and A. Kőkce, “The interface state energy distribution from capacitance–frequency characteristics of goldyn-type Gallium arsenide Schottky barrier diodes exposed to air”, Thin Solid Films, 425, 210 (2003).
[24] R. X. Wang, S. J. Xu, S. L. Shi, C. D. Beling, S. Fung, D. G. Zhao, H. Yang, and X. M. Tao, “ Probing deep level centers in GaN epilayers with variable-frequency capacitance voltage characteristics of Au/GaN Schottky contacts”, Appl. Phys. Lett., 89, 143505 (2006).
[25] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi and J. M. Tsai “GaN metal-semiconductor-metal photodetectors with low-temperature-GaN cap layers and ITO metal contacts”, IEEE Electron Device Lett., 24, 212 ( 2003).
[26] O. Katz,V. Garber, B. Meyler, G. Bahir and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors”, Appl. Phys. Lett., 79, 1417 (2001).