簡易檢索 / 詳目顯示

研究生: 何治儀
Ho, Chih-I
論文名稱: 手機背面按鍵操作範圍與間距之績效評估
Evaluate the Operation Range and Space of Keys on the Back Side of Mobile Phone
指導教授: 吳豐光
Wu, Fong-Gong
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 67
中文關鍵詞: 背面操作操作範圍水平按鍵間距
外文關鍵詞: Back side operation, Operation range, Horizontal key space
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,全世界手機使用的人口已逐漸增加,手機成為人們不可或缺的生活必需品之一,造成手機等通訊產品蓬勃發展,而手機除了通話的功能以外,文字簡訊的使用也逐漸受到歡迎,但輕薄短小的發展趨勢以及大螢幕的需求,加上多功能就是好的迷思,使得現有產品有多數皆不符合人因需求,尤其是按鍵越來越小,使得表面積較大的大拇指操作不易,近期有數位學者提出背面操作想法的研究,希望能發展出其他型態的操作方式,解決手機大小限制的難題。
    本研究是以實體按鍵為主,探討新式手機背面操作方式之合適操作範圍以及水平按鍵間距,第一步先找出符合使用者人因需求之舒適操作範圍,第二步再根據第一步的結果範圍,在該範圍內配置不同水平間距的按鍵,以反應時間與錯誤率來探討何種間距較適合用於背面操作,並搭配心理量表的評估以及簡單的訪談,去了解背後的原因。期望能同時滿足使用者對產品的要求並兼顧符合人因需求的條件。
    第一部分實驗進行以超過2/3受測者認為較好施力的範圍作為最後的結果,發現中指的移動範圍最大,小指及無名指的移動範圍較小,手長掌寬對於部份手指定位點X、Y值有顯著的影響,但以X值(水平方向)的影響較大。第二部份實驗請受測者操作四款不同按鍵間距的實驗模型,並使用電腦程式輔助測量反應時間與記錄錯誤次數,探討不同手指、不同間距兩個因子間的交互影響,結果發現12.5mm間距的反應時間最短,錯誤率也最低,並且各手指間適合的間距有些許差異,可作為日後發展背面操作按鍵的參考之一。

    In recent years, people who use mobile phones are increasing worldwide. Mobile has become one of the necessities in our lives and results in thriving development of communication products, such as mobile phones. Besides communication, text message gradually becomes popular. The trends in thin and short mobile phones, the needs of large screen, and the myth of multi-function mobiles make most of the existing products hardly meet the demands of human factors. For instance, it is really hard to use large-surface thumb to press the smaller and smaller keys. To solve this problem, some scholars have researched into back-side operation and look forward to developing other operating ways.
    In this study, we mainly focused on physical keys and discussed the proper operation range for backside operating function in modern mobile phones and the horizontal space between keys. First, we tried to find the operation range which fits demands of human factors and makes users feel comfortable. Second, the keys were arranged in different horizontal space within the range we measured. Third, based on the response time and error rate, we evaluated which space is more proper to use in backside operation. Meanwhile, we used a psychological assessment scale and some simple interviews to see the reasons behind.
    In the first part of our experiment, we used the range which satisfies more than two thirds of subjects. Later, we found that the range for middle finger is the largest while the ranges for ring and little finger are relatively small. On the other hand, length and width of hands have significant impacts on the coordinates of finger location point, especially on X coordinates. In the second part, subjects operated four experimental models arranged in different key space. With the assistance of computer programs, we recorded the reaction time and error rate of each other. Therefore, we can evaluate the mutual effects between different fingers and key space. According to the data, we found the reaction time for 12.5mm space is the shortest one and it also has the lowest error rate. Although there is some difference in proper space for respective fingers, the results can be regarded as reference of backside keys operation in the future.

    摘 要 I ABSTRACT II 誌 謝 III 目 錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 2 第三節 研究目的 3 第四節 研究範圍 3 第五節 研究架構 4 第二章 文獻探討 6 第一節 手部生理結構及特徵 6 第二節 生理不適相關研究 8 第三節 背面操作相關研究 10 第四節 鍵盤相關研究 13 第五節 操作績效評估 18 第六節 小結 20 第三章 研究方法與實驗設計 21 第一節 實驗規劃 21 第二節 實驗分析方法 22 第三節 <實驗一> 觀察雙手手指背面操作範圍 25 第四節 <實驗二> 按鍵水平間距績效評估 30 第四章 結果分析與討論 36 第一節 手指背面操作範圍 36 第二節 按鍵水平間距實驗 42 第三節 討論 51 第五章 結論與建議 56 第一節 結論 56 第二節 未來研究建議 58 參考資料 59 附錄 實驗一記錄表格 64 附錄 實驗二程式顯示畫面 65 附錄 實驗二記錄表格 67

    英文部分
    1. Aoki, T., Francis, P. R., Kinoshita, H., 2003. Differences in the abilities of individual fingers during the performance of fast, repetitive tapping movements. Experimental Brain Research. 152, 270-280.
    2. Balakrishnan, V., Paul, H. P. Y., 2008. A study of the effect of thumb sizes on mobile phone texting satisfaction. Journal of Usability studies. 3, 118-128.
    3. Barbara, A. S., Lawrence, J. F., Thomas, J. A., 1987. Occupational factors and carpal tunnel syndrome. American Journal of Industrial Medicine. 11, 343-358.
    4. Clawson, J., Lyons, K., Starner, T., Clarkson, E., 2005, The impacts of limited visual feedback on mobile text entry for the twiddler and mini-qwerty keyboards, IEEE Computer Society, pp. 170–177.
    5. Crossman, E., 1957. The speed and accuracy of simple hand movements. The Nature and Acquisition of Industrial Skills.
    6. Depeault, A., Meftah, E., Chapman, C., 2008. Tactile speed scaling: Contributions of time and space. Journal of Neurophysiology. 99, 1422.
    7. Dvorak, A., 1943. There is a better typewriter keyboard. National Business Education Quarterly. 11, 51-58.
    8. Fitts, P., 1954. The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology: General. 121, 262-269.
    9. Han, S. H., Kim, K. J., Yun, M. H., Hong, S. W., Kim, J., 2004. Identifying mobile phone design features critical to user satisfaction. Human Factors and Ergonomics in Manufacturing. 14, 15-29.
    10. Hare, C. B., 2002. Redefining user input on handheld devices. IEE Conference Publications. 2002, 388-393.
    11. Hiraoka, S., ISSHIN, M., KIYOSHI, T., 2003. Behind touch: A text input method for mobile phone by the back and tactile sense interface. Joho Shori Gakkai Shinpojiumu Ronbunshu. 2003;NO.7;, 131-138.
    12. Hsiao, H., Wu, F., Hsi, R., Ho, C., Shi, W., Chen, C., 2009. The evaluation of operating posture in typing the qwerty keyboard on pda. Ergonomics and Health Aspects of Work with Computers. 241-249.
    13. Kinkead, R., 1975, Typing speed, keying rates, and optimal keyboard layouts, Human Factors and Ergonomics Society, pp. 159-161.
    14. Kinoshita, H., Murase, T., Bandou, T., 1996. Grip posture and forces during holding cylindrical objects with circular grips. Ergonomics. 39, 1163-1176.
    15. Ling, C., Hwang, W., Salvendy, G., 2007. A survey of what customers want in a cell phone design. Behaviour & Information Technology. 26, 149-163.
    16. Noyes, J., 1983. Qwerty keyboard: A review. International Journal of Man-Machine Studies. 18, 265-281.
    17. Ohtsuki, T., 1981. Decrease in grip strength induced by simultaneous bilateral exertion with reference to finger strength. Ergonomics. 24, 37-48.
    18. Plant, S., 2002, On the mobile.
    19. Radwin, R. G., Oh, S. Y., Jensen, T. R., Webster, J. G., 1992. External finger forces in submaximal 5-finger static pinch prehension. Ergonomics. 35, 275-288.
    20. Sanders, M. S., McCormick, E. J., 1998. Human factors in engineering and design, 7th ed, McGRAW-HILL, INC, Taipei.
    21. Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S., Quinn, J. T., 1979. Motor-output variability - theory for the accuracy of rapid motor acts. Psychological Review. 86, 415-451.
    22. Silfverberg, M., 2003. Using mobile keypads with limited visual feedback: Implications to handheld and wearable devices, In: (Eds.), Human-computer interaction with mobile devices and services. pp. 76-90.
    23. Sorensen, K., 2007. Multi-objective optimization of mobile phone keymaps for typing messages using a word list. European Journal of Operational Research. 179, 838-846.
    24. Sugimoto, M., Hiroki, K., 2006, Hybridtouch: An intuitive manipulation technique for pdas using their front and rear surfaces, in: Proceedings of the 8th conference on Human-computer interaction with mobile devices and services, ACM, Helsinki, Finland.
    25. Vogel, D., Baudisch, P., 2007, Shift: A technique for operating pen-based interfaces using touch, in: Proceedings of the SIGCHI conference on Human factors in computing systems, ACM, San Jose, California, USA.
    26. Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J., Shen, C., 2007, Lucid touch: A see-through mobile device, in: Proceedings of the 20th annual ACM symposium on User interface software and technology, ACM, Newport, Rhode Island, USA.
    27. Wobbrock, J. O., Cutrell, E., Harada, S., MacKenzie, I. S., 2008a, An error model for pointing based on fitts' law, in: Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing systems, ACM, Florence, Italy, pp. 1613-1622.
    28. Wobbrock, J. O., Myers, B. A., Aung, H. H., 2008b. The performance of hand postures in front- and back-of-device interaction for mobile computing. International Journal of Human-Computer Studies. 66, 857-875.
    29. Yun, M. H., Han, S. H., Hong, S. W., Kim, J., 2003, Incorporating user satisfaction into the look-and-feel of mobile phone design, Taylor & Francis Ltd, pp. 1423-1440.
    30. Zatsiorsky, V. M., Li, Z. M., Latash, M. L., 1998. Coordinated force production in multi-finger tasks: Finger interaction and neural network modeling. Biological Cybernetics. 79, 139-150.
    31. Zelaznik, H. N., McCabe, G. P., Mone, S., Thaman, C., 1988. Role of temporal and spatial precision in determining the nature of the speed accuracy trade-off in aimed-hand movements. Journal of Experimental Psychology-Human Perception and Performance. 14, 221-230.
    中文部份
    1. Burnie, D., 1997. 新世紀人體學習百科, 貓頭鷹出版社, 台北.
    2. Parker, S., Fornari, G., 1994. 圖繪人體探索圖集,
    3. 李開偉, 2003. 實用人因工程學 修訂版, 2. 全華科技圖書股份有限公司,
    4. 張一芩, 1998. 人因工程學, 揚智文化事業股份有限公司, 台北.
    5. 張家瑋, 2007, 手機和弦輸入方式之創新與評估, in: 工業設計研究所, 國立成功大學, 台南.
    網路資料
    1. 資策會FIND網站:2009年第四季我國行動上網觀測http://www.find.org.tw/find/home.aspx?page=many&id=252

    無法下載圖示 校內:2020-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE