簡易檢索 / 詳目顯示

研究生: 林家暐
Lin, Chia-Wei
論文名稱: 完整性監視測試平台演算法可用性模擬分析工具之開發研究
Development of Integrity Monitoring Test-Bed Algorithm Availability Simulation Tool
指導教授: 詹劭勳
Jan, Shau-Shiun
學位類別: 碩士
Master
系所名稱: 工學院 - 民航研究所
Institute of Civil Aviation
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 59
中文關鍵詞: 全球衛星定位系統陸基擴增系統完整性監視測試平台可用性模擬工具使用者圖形介面
外文關鍵詞: Global Positioning System (GPS), Ground-Based Augmentation System (GBAS), Integrity Monitoring Test-bed (IMT), Availability Simulation Tool, Graphical User Interface (GUI)
相關次數: 點閱:208下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • GPS在全世界有許多導航定位的應用,本論文著重於民航導航服務。然而,單獨使用GPS導航定位,並無法達到民航的導航性能需求 (required navigation performance, RNP),特別是在民航機降落的階段。陸基擴增系統(ground based augmentation system, GBAS)是對於區域性導航,尤其在機場附近,是很好的解決辦法。GBAS提供了第一類 (Category I, CAT I) 進場的導航服務能力,也能夠支援曲線進場。由於台灣目前並沒有GBAS系統的建置,為了評估GBAS系統的效能,必須發展一套完整的GBAS演算法,若以架設實驗儀器於各機場的方式,將耗費相當多的人力與經費。因此,本論文研究著重於開發一可用性分析工具用以模擬GBAS地面設備 (ground facility) 演算法的原型,稱作完整性監視測試平台 (integrity monitoring test-bed, IMT)。此IMT模擬工具包含了IMT演算法及一使用者圖形介面 (graphical user interface, GUI) 方便讓使用者修改所需要的參數。另外,此IMT模擬工具所提供的結果為Stanford Chart,Stanford Chart是一個很好的可用性分析圖表,透過使用者定位的結果以及保護極限 (protection level, PL) 的計算,使用者能夠從Stanford Chart中可以得知模擬的結果是否滿足CAT I的要求。此外,IMT模擬工具是藉由Qt開發,Qt是一個開放源且跨平台的工具,使用Qt開發此IMT模擬工具,能夠使IMT模擬工具在不同的系統及平台上執行。在本論文中,多個位於不同飛航情報區的機場會被用來模擬及評估其效能。本論文所呈現的結果將可以提供未來建置GBAS於台北飛航情報區的參考依據。

    Global positioning system (GPS) has been used for positioning, navigation and time applications. However, in the field of civil aviation, standalone GPS cannot meet the required navigation performance (RNP) for aircraft approaches and landings. In order to solve this problem, the international civil aviation organization (ICAO) recommends ground-based augmentation system (GBASs) as a solution to augment GPS for category I (CAT I) approaches and landings. GBAS also support complex approach procedures. While the Taipei flight information region (FIR) lacks GBAS services, it will require a lot of effort to assess its navigation service performance under various system configurations. This effort will also require many administrative procedures for assessment of the project and will also require a great deal of labor. To reduce these related costs, in this thesis, an availability analysis tool is developed to simulate the GBAS prototype as an integrity monitoring test-bed (IMT) at the airport of interest. This IMT simulation tool includes an IMT algorithm and a graphical user interface (GUI), which is also developed to allow the users to modify parameters. The output of the simulation tool is a Stanford Chart, which indicates the availability for user protection level versus various RNP levels. This simulation tool is developed on Qt (http://qt.digia.com/), an open-source cross-platform software, allowing the tool to run on various devices and operation systems. Several airports in different FIRs are used to evaluate the performance. The results of this thesis can serve as a reference for future GBAS implementation in the Taipei FIR.

    摘要 III ABSTRACT IV ACKNOWLEDGEMENT V 第一章 緒論 VI 第二章 IMT模擬工具介紹 VII 第三章 使用者圖形介面 VIII 第四章 模擬設置與模擬結果 IX 第五章 結論與未來工作 X CHAPTER 1 INTRODUCTION 1 1.1 GROUND-BASED AUGMENTATION SYSTEM (GBAS) 2 1.2 INTEGRITY MONITORING TEST-BED (IMT) 3 1.3 REQUIRED NAVIGATION PERFORMANCE 4 1.4 LITERATURE REVIEW 6 1.5 THESIS OUTLINE AND CONTRIBUTIONS 7 CHAPTER 2 THE IMT SIMULATION TOOL 8 2.1 DEVELOPMENT OF THE IMT SIMULATION TOOL SOFTWARE 8 2.2 IMT SIMULATION TOOL ARCHITECTURE 8 2.3 EXPERIMENT DATA ANALYSIS FOR C/N0 EMPIRICAL MODEL 10 2.4 GPS RANGE MEASUREMENT SIMULATION 13 2.5 IMT ALGORITHM 17 2.6 STANFORD CHART 19 CHAPTER 3 GRAPHICAL USER INTERFACE 22 3.1 IMT SIMULATION TOOL GUI 22 3.2 LOADING EPHEMERIS FILES 23 3.3 SIMULATION TIME 24 3.4 ERROR SOURCE ADJUSTMENT 25 3.5 LEVEL OF RECEIVER 26 3.6 REFERENCE STATION POSITION ADJUSTMENT 26 CHAPTER 4 SIMULATION CONFIGURATION AND SIMULATION RESULTS 28 4.1 EFFECTS ON THE QM ALGORITHM FROM ADDING ERRORS 28 4.1.1 DETERMINE COMMON SET 29 4.1.2 SIMULATION ERROR MODEL 30 4.1.3 SIMULATION RESULTS OF QM UNDER NOMINAL CONDITION 32 4.1.4 SIMULATION RESULTS OF QM WITH IONOWPHERE ANOMALY 35 4.2 VALIDATION OF THE IMT SIMULATION TOOL 41 4.2.1 SIMULATION CONFIGURATION AND RESULTS 42 4.3 COMPARISON SIMULATION OF DIFFERENT RECEIVER LEVELS 48 4.3.1 SIMULATION RESULTS 48 4.4 DIFFERENT AIRPORT SIMULATIONS WITH THE GAD-C RECEIVER 50 4.4.1 SIMULATION CONFIGURATION AT RCKH AND WSSS AND SIMULATION RESULTS 51 CHAPTER 5 CONCLUSIONS AND FUTURE WORK 57 REFERENCES 58

    [1] K. D. McDonald, "GPS in Civil Aviation," GPS World, September, 1991.
    [2] Navigation Programs - Ground Based Augmentation System (GBAS). Available: http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/laas
    [3] J. Lee, "GPS-Based Aircraft Landing Systems with Enhanced Performance: Beyond Accuracy," Thesis of Ph.D. Dissertation, Stanford University, March 2005.
    [4] G. Xie, "Optimal On-Airport Monitoring of the Integrity of GPS-Based Landing Systems," Thesis of Ph.D. Dissertation, Stanford University, March 2004.
    [5] P. Enge, "Local Area Augmentation of GPS for the Precision Approach of Aircraft," IEEE, Vol. 87, January 1999.
    [6] S. Pullen, T. Walter, and P. Enge, "System Overview, Recent Developments, and Future Outlook for WAAS and LAAS," Tokyo University of Mercantile Marine GPS Symposium, Tokyo, Japan, November, 2002.
    [7] N. ICAO, "GBAS CAT II/III Development Baseline SARPs," International Civil Aviation Organization, 2010.
    [8] D. Akos, R.E. Phelts, S. Pullen, and P. Enge, "GPS Signal Quality Monitoring: Test Results," ION National Technical Meeting, Anaheim, CA., January, 2000.
    [9] T. Skidmore and F. v. Grass, "DGPS Ground Station Integrity Monitoring," ION National Technical Meeting, San Diego, CA., January, 1994.
    [10] S. Matsumoto, S. Pullen, M. Rotkowitz, and B. Pervan, "GPS Ephemeris Verification for Local Area Augmentation System (LAAS) Ground Stations," ION GPS, Nashville, TN., September, 2000.
    [11] RTCA DO-245A, "Minimum Aviation System Performance Standards for the Local Area Augmentation System (LAAS)," ed. Washington, D.C., December 9, 2004.
    [12] RTCA DO-246B, "GNSS-Based Precision Approach Local Area Augmentation System (LAAS) Signal-In-Space Interface Control Document (ICD)," ed. Washington, D.C., November 28, 2001.
    [13] RTCA DO-253C, "Minimum Operational Performance Standards for GPS Local Area Augmentation System Airborne Equipment," ed. Washington, D.C., December 16, 2008.
    [14] G. A. McGraw, T. Murphy, M.Brenner, S. Pullen, and A. J. V. Dierendonck, "Development of LAAS Accuracy Models," ION GPS, Salt Lake City, UT., September, 2000.
    [15] GPS NANUS, ALMANACS, &OPS ADVISORIES. Available: http://www.navcen.uscg.gov/?pageName=gpsAlmanacs
    [16] Crustal Dynamics Data Information System. Available: ftp://cddis.gsfc.nasa.gov/pub/gps/data/daily
    [17] M. Luo, S. Pullen, J. Dennis, H. Konno, G. Xie, T. Walter, et al., "LAAS Ionospherer Spatial Gradient Threat Model and Impact of LGF and Airborne Monitoring," ION GPS/GNSS, Portland, OR., September, 2003.
    [18] M. Luo, S. Pullen, D. Akos, G. Xie, S. Datta-Barua, T. Walter, et al., "Assessment of Ionospheric Impact on LAAS Using WAAS Supertruth Data," Proceedings of the 58th Annual Meeting of the Institute of Navigation and CIGTF 21st Guidance Test Symposium, Albuquerque, NM., June 2002.
    [19] M. Luo, S. Pullen, S. Datta-Barua, G. Zhang, T. Walter, and P. Enge, "LAAS Study of Slow-Moving Ionosphere Anomalies and Their Potential Impacts," ION GNSS 18th International Technical Meeting of the Satellite Division, Long Beach, CA., September, 2005.
    [20] Engineering Development Services Group LAAS Website. Available: http://laas.tc.faa.gov/EWR_Graph.html
    [21] C. Tedeschi, "GBAS/LAAS CAT-I Siting Order Background, and Application to Newark Liberty International Airport," FAA, October 19th, 2010.
    [22] H. C. Hsu, "Implementation of a Local Area Integrity Monitoring for GPS," M.S. Thesis, National Cheng Kung University, 2010.

    下載圖示 校內:2019-06-26公開
    校外:2019-06-26公開
    QR CODE