| 研究生: |
王重諺 Wang, Chung-Yen |
|---|---|
| 論文名稱: |
不同外長軸/外短軸長度比之6063-T5鋁合金橢方管在循環彎曲負載下外短軸變化與臨界外短軸變化之實驗研究 Experimental Study on the Change of the Outer Minor Axis and the Critical Outer Minor Axis of 6063-T5 Aluminum Alloy Elliptical Square Tubes with Different Outer Major Axis/Outer Minor Axis Length Ratios under Cyclic Bending |
| 指導教授: |
潘文峰
Pan, Wen-Fung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 6063-T5鋁合金橢圓方管 、循環彎曲 、外短軸變化 、臨界外短軸變化 、經驗模型 |
| 外文關鍵詞: | 6063-T5 Aluminum alloy oval square tube, cyclic bending, outer minor axis variation, critical minor axis variation, empirical model |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對不同外長軸/外短軸長度比(1.5、2.0、2.5、3.0)之6063-T5鋁合金橢圓方管,進行對稱控制曲率下的循環彎曲實驗,以探討其外短軸的變化與臨界外短軸變化之趨勢。根據外短軸變化與循環圈數的關係曲線,大致可將其變化行為區分為三個階段:
初始階段: 外短軸的變化迅速增大;第二階段: 外短軸的變化速率趨緩,呈穩定增長;第三階段:外短軸變化趨於穩定,不再顯著增加,最終導致試件破壞。從實驗結果可觀察到,控制曲率愈大時,其對應之臨界外短軸變化亦隨之增大;此外,外長軸與外短軸的長度比越大時,臨界外短軸變化亦呈增大趨勢。
本研究進一步導入Lee等人針對SUS304不鏽鋼圓管所提出之橢圓化經驗模型,並修正其模型以擬合本研究中不同外長軸/短軸比之6063-T5鋁合金橢圓方管試件的行為。透過最小平方法進行非線性回歸分析,獲得不同長短軸比下的擬合參數,以描述其在循環彎曲負載下,第一與第二階段中短軸變化與循環圈數的關係。
此外,研究亦發現臨界外短軸變化與控制曲率之對數呈現線性關係,進而提出相對應之預測方程式,用以描述不同幾何參數下的6063-T5鋁合金橢圓方管在循環彎曲下之臨界變化行為。最後,理論預測與實驗結果對比顯示高度一致性,驗證了本研究所提出經驗模型與參數設定之可行性與準確性。
This study investigates the mechanical behavior of 6063-T5 aluminum alloy oval square tubes with four different outer major-to-minor axis ratios (1.5, 2.0, 2.5, and 3.0) subjected to cyclic bending under symmetric curvature control. The variation of the outer minor axis and the critical condition leading to structural instability were systematically examined. Experimental observations revealed that the evolution of outer minor axis variation can be categorized into three distinct stages: (1) a rapid increase during the initial stage, (2) a gradual and stable growth during the second stage, and (3) a saturation stage where further increase was negligible before final failure. Results showed that higher controlled curvature values corresponded to greater critical outer minor axis variation, while larger axis ratios also led to increased critical variation.
Furthermore, a modified version of the empirical ovalization model originally proposed by Lee et al. for SUS304 stainless steel circular tubes was applied. Nonlinear regression using the least squares method provided fitting parameters describing the relationship between minor axis variation and the number of cycles during the first and second stages. In addition, a logarithmic linear correlation between the critical minor axis variation and the controlled curvature was established, leading to a predictive formula capable of estimating the critical deformation behavior under varying geometric parameters. The high consistency between theoretical predictions and experimental data validates the reliability and accuracy of the proposed empirical model and its parameterization.
1. L. G. Brazier, “On the flexure of thin cylindrical shells and other thin sections”, Proceedings of the Royal Society, Series A, Vol. 116, pp. 104-114 (1927).
2. P. K. Shaw and S. Kyriakides, “Inelastic analysis of thin-walled tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 21, No. 11, pp. 1073-1100 (1985).
3. S. Kyriakides and P. K. Shaw, “Inelastic buckling of tubes under cyclic loads”, Journal of Pressure Vessel Technology, Vol. 109, No. 2, pp. 169-178 (1987).
4. E. Corona and S. Kyriakides, “On the collapse of inelastic tubes under combined bending and pressure”, International Journal of Solids and Structures, Vol. 24, No. 5, pp. 505-535 (1988).
5. E. Corona and S. Kyriakides, “An experimental investigation of the degradation and buckling of circular tubes under cyclic bending and external pressure”, Thin-Walled Structures, Vol. 12, No. 3, pp. 229-263 (1991).
6. W. F. Pan, T. R. Wang and C. M. Hsu, “A curvature-ovalization measurement apparatus for circular tubes under cyclic bending”, Experimental Mechanics, Vol. 38, No. 2, pp. 99-102 (1998).
7. W. F. Pan and Y. S. Her, “Viscoplastic collapse of thin-walled tubes under cyclic bending”, ASME Journal of Engineering Materials and Technology, Vol. 120, No. 4, pp. 287-290 (1998).
8. W. F. Pan and C. H. Fan, “An experimental study on the effect of curvature-rate at preloading stage on subsequent creep or relaxation of thin-walled tubes under pure bending”, JSME International Journal, Series A, Vol. 41, No. 4, pp. 525-531 (1998).
9. K. L. Lee, W. F. Pan and J. N. Kuo, “The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 38, No. 14, pp. 2401-2413 (2001).
10. K. L. Lee and W. F. Pan, “Pure bending creep of SUS304 stainless steel tubes”, Steel and Composite Structures, Vol. 2, No. 6, pp. 461-474 (2002).
11. W. F. Pan and K. L. Lee, “The effect of mean curvature on the response and collapse of thin-walled tubes under cyclic bending”, JSME International Journal, Series A, Vol. 45, No. 2, pp. 309-318 (2002).
12. K. H. Chang, C. M. Hsu, S. R. Sheu and W. F. Pan, “Viscoplastic response and collapse of 316L stainless steel under cyclic bending”, Steel and Composite Structures, Vol. 5, No. 5, pp. 359-374 (2005).
13. K. H. Chang, W. F. Pan and K. L. Lee, “Mean moment effect on circular thin-walled tubes under cyclic bending”, Structural Engineering and Mechanics, Vol. 28, No. 5, pp. 495-514 (2008).
14. K. H. Chang and W. F. Pan, “Buckling life estimation of circular tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 46, No. 2, pp. 254-270 (2009).
15. A. Limam, L. H. Lee and S. Kyriakides, “On the collapse of dented tubes under combined bending and internal pressure”, International Journal of Solids and Structures, Vol. 55, No. 1, pp. 1-12 (2010).
16. A. Limam, L. H. Lee, E. Corona and S. Kyriakides, “Inelastic wrinkling and collapse of tubes under combined bending and internal pressure”, International Journal of Mechanical Sciences, Vol. 52, No. 5, pp. 637-647 (2012).
17. K. L. Lee, C. M. Hsu and W. F. Pan, “The influence of diameter-to-thickness ratios on the response and collapse of sharp-notched circular tubes under cyclic bending”, Journal of Mechanics, Vol. 28, No. 3, pp. 461-468 (2012).
18. K. L. Lee, C. M. Hsu and W. F. Pan, “Viscoplastic collapse of sharp-notched circular tubes under cyclic bending”, Acta Mechanics Solida Sinica, Vol. 26, No. 6, pp. 629- 641 (2013).
19. K. L. Lee, C. M. Hsu and W. F. Pan, “Response of sharp-notched circular tubes under bending creep and relaxation”, Mechanical Engineering Journal, Vol. 1, No. 2, pp. 1-14 (2014).
20. K. L. Lee, C. J. Lin and W. F. Pan, “Mechanical behavior and buckling failure of local sharp-notched SUS304 stainless steel tubes subjected to cyclic bending”, Journal of Science and Engineering Technology, Vol. 11, No. 1, pp. 9-19 (2015).
21. K. L. Lee, K. H. Chang and W. F. Pan, “Effect of notch depth and direction on stability of local sharp-notched circular tubes subjected to cyclic bending”, International Journal of Structural Stability and Dynamics, Vol. 18, No. 7, 1850090 [23 pages] (2018).
22. L.W.Liu and W. F. Pan, “Study on the Outer Minor Axis Variation and Critical Outer Minor Axis Variation of Oval square tubes with Different Major / Minor Axis Ratios under Cyclic Bending”, 國立成功大學工程科學研究所碩士論文(2024).
23. K. L. Lee, C. C. Chung and W. F. Pan, “Growing and critical ovalization for sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending”, Journal of Chinese Institute of Engineers, Vol. 39, No. 8, pp. 926-935 (2016).