簡易檢索 / 詳目顯示

研究生: 林永鎔
Lin, Yung-Jung
論文名稱: 二元圓-橢圓顆粒混合物於垂直振動下之分離現象研究
A study on the particle segregation in a binary sphere-ellipsoid granular mixture under vertical vibration
指導教授: 李宇欣
Lee, Yusin
方中
Fang, Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 81
中文關鍵詞: 二元顆粒混合物分層效應垂直振動
外文關鍵詞: vertical-vibration, binary dry granular mixture, particle segregation
相關次數: 點閱:214下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中二維顆粒碰撞模擬程式被運用在研究二元圓-橢圓乾燥顆粒混合物於垂直振動下因不同形狀所導致的顆粒分層現象。尤其我們模擬由相同體積圓和不同長短徑比橢圓組成之乾燥顆粒混合物的分層現象。兩種顆粒的質心位置在模擬中被連續的紀錄,從中可推論振動振幅和橢圓長短徑比對分層的影響。研究中發現振動振幅和頻率對分層現象都有影響。當上述兩種因素的值增加時,兩顆粒之間質心位置的差距更加明顯。假如特別專注在二元圓-橢圓乾燥顆粒混合物上,分層現象僅發生在橢圓長短徑比達到其臨界值時。在充分的振動振幅和頻率時,橢圓朝著混合物的自由面移動,同時圓形顆粒朝著容器底部聚集。

    In the present study the 2-D particle collision simulation program is employed to study the particle segregation phenomenon induced by the shape-difference in a binary sphere-ellipsoid dry granular mixture under vertical vibration. In particular, we simulate the segregation phenomenon for a dry granular mixture consisting of the same-volume spheres and ellipsoids with different aspect ratios. The Locations of the mass centers of the two types of particles are continuously recorded in the simulations, from which the influences of the vibration amplitude and the aspect ratio on the segregation can be deduced. It is found that both the vibration amplitude and frequency have influence on the segregation phenomenon. As the values of these two factors increase, the departing between the mass centers of the two types of particles becomes more significant. If particular interest is that for a binary sphere-ellipsoid dry granular mixture, the segregation can only occur when the aspect ratio of the ellipsoids reaches its critical value. It is found that under sufficient vibration amplitude and frequency the ellipsoid particles move toward the free surface of the mixture, while the spheric particles gather themselves at the bottom of the vessel.

    第一章 顆粒物質導論-------------------------------------- 1 1.1 顆粒物質--------------------------------------------- 1 1.2 顆粒物質的性質--------------------------------------- 1 1.3 論文架構--------------------------------------------- 6 第二章 研究方法------------------------------------------ 7 2.1簡介-------------------------------------------------- 7 2.2分子動力學(Molecular Dynamics)------------------------ 7 2.3 連體力學(Continuum Mechanics)------------------------ 9 2.4 離散元素法(Discrete Element Method, DEM)-------------10 2.5 結論-------------------------------------------------11 第三章 計算方法------------------------------------------12 3.1 簡介-------------------------------------------------12 3.2 凸面顆粒的表示和操作---------------------------------12 3.2.1 顆粒生成-------------------------------------------12 3.2.2 各種頂點的定義-------------------------------------13 3.2.3 點和面之關係-違背程度(degree of violation)---------14 3.2.4 尋找有效頂點---------------------------------------14 3.2.5 尋找多面體所有的有用頂點---------------------------16 3.2.6 顆粒體積-------------------------------------------17 3.2.7 顆粒的移動和旋轉-----------------------------------17 3.2.8 接觸偵測-------------------------------------------18 3.3 凸面顆粒的排列和振動模擬-----------------------------18 3.3.1 系統生成-------------------------------------------19 3.3.2 系統排列-------------------------------------------19 3.3.3 系統振動-------------------------------------------20 3.4 降低維度---------------------------------------------21 第四章 問題定義------------------------------------------22 4.1 簡介-------------------------------------------------22 4.2 系統說明---------------------------------------------22 4.2.1 降低維度-------------------------------------------22 4.2.2 參數設定-------------------------------------------22 4.2.3 其它設定-------------------------------------------24 4.2.4 顆粒設定-------------------------------------------24 4.3 測詴過程---------------------------------------------25 4.3.1 正多邊形-------------------------------------------25 4.3.2 圓和橢圓形-----------------------------------------38 4.4 結果討論---------------------------------------------72 第五章 結論與未來展望------------------------------------76 5.1 結論-------------------------------------------------76 5.2 未來展望---------------------------------------------77 參考文獻-------------------------------------------------79

    [1] Jacque Duran:Sands, Powders, and Grains:An Introduction to the Physics of Granular Materials, Springer, 1999
    [2] 潘國樑,環境地質與防災科技,地景企業股份有限公司,169-176,民國94年。
    [3] Gerald H. Ristow:Pattern Formation in Granular Materials, Springer, 1999
    [4] Clément, E. and Rajchenbach, J., Fluidization of a bidimensional powder. Europhys. Lett. 16, 133, 1991.
    [5] E. Guazzelli and L. Oger, eds., Mobile Particulate Systems (Dordrecht:Kluwer Academic, 1995.
    [6] R.L. Brown, The fundamental principles of segregation, J. Inst. Fuel 13, 15, 1939.
    [7] R. Jullien, P. Meakin and A. Pavlovitch:Jullien, Meakin, and Pavlovitch reply, Phys. Rev. Lett., VOLUME 70, 2195, 1993.
    [8] J. Duran, J. Rajchenbach, and E. Clément, Arching Effect Model for Particle Size Segregation, 1993.
    [9] 黃俊豪,「剪力流中分離現象研究」,國立中央大學機械工程研究所碩士論文,9-12,民國95年7月。
    [10]Das Gupta, S., Khakhar, D. V., and Bathia, S. K., Axial segregation of particles in a horizontal rotating cylinder. Chem. Engineering Science 46, 1513, 1991.
    [11]Yanagita, T., Three-dimensional cellular automaton model of segregation of granular materials in a rotating cylinder. Phys. Rev. Lett. 82, 3488, 1999.
    [12]Alder, B. J. and Wainwright, T. E. J. Chem. Phys. 27, 1208, 1957.
    [13]Alder, B. J. and Wainwright, T. E. J. Chem. Phys. 31, 459, 1959.
    [14]Stillinger, F. H. and Rahman, A. J. Chem. Phys. 60, 1545, 1974.
    [15]J.M.Haile, Molecular Dynamics Simulation , John Wiley&Sons, Inc, 1992.
    [16]T. Pöschel and T. Schwager: Computation Granular Dynamics, Springer, 13-17, 2005.
    [17]Y. C. Fung, A First Course In Continuum Mechanics Second Edition, 1-6, 1981.
    [18]Cundall P A, A computer model for simulating progressive large scale movements in blocky rock systems, ISRM Symp., Nancy, France, Proc. 2, 129-136, 1971.
    [19]J.R. Williams, G. Hocking and G.G.W, Mustoe, The theoretical basis of the Discrete Element Method, Proc. NUMETA`85, A.A. Balkena, 1985.
    [20]林立欣,「離散元素模擬之帄行策略」,碩士論文摘要,國立台灣大學土木工程學系,1-2,2004。
    80
    [21]Lee, Y., Fang, C., Tsou, Y.R., Lu, L.S., Yang, C.T. (2009): A packing algorithm for three-dimensional convex particles. Granul. Matt. (in press)(DOI 10.1007/s10035-
    009-0133-7).
    [22]Dantzig, G. B., Linear programming and extensions., Princeton, N.J.: Princeton University Press, 1963.
    [23]Cormen, T.H., Leiserson, C.E., Rivest, R.L., Introduction to algorithms., Cambridge, Mass.: MIT Press, 2001.

    下載圖示 校內:2010-06-19公開
    校外:2010-06-19公開
    QR CODE