簡易檢索 / 詳目顯示

研究生: 吳建彤
Wu, Chien-Tung
論文名稱: 氣化燃氣燃燒流場之數值模擬分析
Numerical Simulations of the Gaseous Fuel in a Combustion Flow
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 87
中文關鍵詞: 天然氣氣化煤氣氮氧化物數值模擬CPR反應器
外文關鍵詞: Computer Simulation, Natural Gas, Coal Gas, CPR, NOx
相關次數: 點閱:96下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 煤炭氣化(Coal Gasification)技術的研發,乃在氣化過程中煤炭經熱分解後和水蒸氣作用而產生可燃性煤氣。而在用於高效率複循環機組IGCC(Integrated Gasification Combined-Cycle Project)可使發電之淨熱效率增至42%左右。因此IGCC技術無論是在技術成熟性、效率評估、環保性能等方面都是最卓越的發電技術,也是最可行的燃煤發電技術。
    本研究將以計算流力軟體Star-CD建立CFD模擬燃燒程序,分析氣化煤氣與天然氣在CPR(Controlled Profile Reactor)之中的燃燒特性,用以在將來評估氣化煤氣於CPR中燃燒之能力。本研究採用之計算及物理模式包括:SIMPLE數值計算法則、High Reynolds Number/k-ε紊流模式、非絕熱PPDF平衡燃燒模式、熱量及動量傳遞模式。Star-CD三維格點的建立則採用多重區塊格點結構法。進行模擬之三維燃燒室流場不僅包括主要燃燒室本身,同時完整地包括靠近進氣口之傘狀擴張區之進氣流場,以及流場下游之傘狀收縮區之出口流場。
    在本研究中發現,equivalence ratio=1.05、150KW反應熱量之天然氣,swirl Number為1.5的secondary air,雖然燃燒溫度偏高,但其流場符合本研究之假設條件下之模擬,而與氣化煤氣的比較下,燃燒溫度偏低的煤氣燃燒高溫區產生於前端傘狀擴張區而後隨下游溫度遞減,NO生成量也少於天然氣之燃燒,其中,CO的含量愈低的氣化煤氣,所燃燒產生的NO也就能相對的被抑制。

    The study of coal gasification technology is partial combustion of coal and oxidized by air, oxygen, steam, and carbon dioxide during gasification process. Integrated Gasification Combined-Cycle Plant may increase the efficiency of 42% with possible improvements. So IGCC is the best technology regardless of operating, efficiency, and environment protecting.
    In this study, Computation Fluid Dynamics Program, Star-CD, analysis combution flow of natural gas and coal one in Controlled Profile Reactor in order to estimate the ability of coal gas in CPR combustion. The computational and physical models adopted in the present study include: SIMPLE computation method, high Reynold number/k-ε two-equations turbulence model, non-adiabatic PPDF equilibrium combustion model and the transport equations of mass, energy, and momentum. The three-dimensional grids are generated adopting the concept of multiple block-structured mesh. The combustion flow simulated in the present study includes combustion flow inside the chamber, inflow between inlet and top quarl, and outflow in the bottom quarl.
    By the study with a 150 kW natural gas at an equivalence ratio of 1.05 and secondary-air swirl number of 1.5, combustion measurements of velocities show generally good agreement with predicted values, although the temperature departure appear between both sides. For the comparison of coal gas, high combustion temperature zones of coal gas whose lower combustion temperature appear top quarl and temperature decreases progressively while flow move down. Generation of NO is also less than one by natural gas. And coal gas involves less CO will produce less NO during combustion.

    中英文摘要 i 致謝 iv 目錄 v 表目錄 viii 圖目錄 ix 符號說明 xii 內文 第一章 緒論 1 §1.1 緣起 1 §1.2 氮氧化物(NOx)之生成理論回顧 2 §1.3 Thermal NOx 之數值研究回顧 3 §1.4 煤氣化的理論研究回顧 4 §1.5 天然氣與氣化煤氣燃燒特性於實驗與模擬的比較研究回顧 6 §1.6 研究目的與內容 7 第二章 物理模式 9 §2.1 問題假設 9 §2.2 漩渦數(swirl number, SN) 9 §2.3 氣相統御方程式(conservation equations) 10 §2.4 紊流模式(turbulence model) 12 §2.5 邊牆函數(wall function) 13 §2.6 Thermal NOx 生成模式 14 §2.7 化學反應模式 17 第三章 數值方法 19 §3.1 非交錯格點系統 19 §3.2 邊界契合座標系統(body-fitted coordinate system) 20 §3.3 多重區塊格點結構 20 §3.4 SIMPLE數值運算法則 20 §3.5 收斂標準 21 第四章 操作條件整理 22 §4.1 反應器裝置輪廓 22 §4.2 模擬條件參數 22 第五章 結果與討論 25 §5.1 天然氣的燃燒 25 速度的比較 25 溫度的比較 27 §5.2 天然氣與氣化煤氣的絕熱燃燒比較 28 天然氣的絕熱燃燒 28 Lurgi氣化煤氣的絕熱燃燒 29 Texaco氣化煤氣的絕熱燃燒 29 Thermal NOx的生成比較 30 綜合討論 31 第六章 結論與未來工作 32 參考文獻 34 自述 86 著作權聲明 87 表目錄 表1 天然氣於CPR反應器中燃燒流場之速度實驗量測值【20】 39 表2 天然氣於CPR反應器中燃燒流場之速度實驗量測值【20】 40 表3 天然氣於CPR反應器中燃燒流場之溫度實驗量測值【20】 41 表4 天然氣於CPR反應器中燃燒流場之溫度實驗量測值【20】 42 表5 不同氣化程序的煤氣成分表 43 圖目錄 圖2-1 天然氣(case 1)之PPDF model混合率-成分濃度與溫度對照圖 44 圖2-2 Lurgi(case 2)之PPDF model混合率-成分濃度與溫度對照圖 45 圖2-3 Texaco(case 3)之PPDF model混合率-成分濃度與溫度對照圖 46 圖2-4 Texaco(case 4)之PPDF model混合率-成分濃度與溫度對照圖 47 圖4-1 Controller Profile Reactor(CPR)【20】 48 圖4-2 CPR格點之整體外形 49 圖4-3 CPR格點之整體外形 50 圖4-4 Fuel於inlet處的注入位置 51 圖4-5 Air於inlet處的注入位置 52 圖4-6 Quarl的外型與格點分佈 53 圖5-0 CPR流場迴流速度實驗量測向量圖【20】 54 圖5-1 速度分佈圖 55 圖5-2(a)入口邊界之軸向速度分佈 56 圖5-2(b)軸向位置0.04m處之軸向速度 56 圖5-2(c)軸向距離0.26m處之軸向速度 57 圖5-2(d)軸向距離0.36m處之軸向速度 57 圖5-2(e)軸向距離0.46m處之軸向速度 58 圖5-2(f)軸向距離0.66m處之軸向速度 58 圖5-2(g)軸向距離0.76m處之軸向速度 59 圖5-2(h)軸向距離0.86m處之軸向速度 59 圖5-2(i)軸向距離1.06m處之軸向速度 60 圖5-2(j)軸向距離1.16m處之軸向速度 60 圖5-2(k)軸向距離1.26m處之軸向速度 61 圖5-3 溫度分佈圖 62 圖5-4(a)入口邊界的溫度分佈 63 圖5-4(b)軸向距離0.04m處之溫度 63 圖5-4(c)軸向距離0.16m處之溫度 64 圖5-4(d)軸向距離0.21m處之溫度 64 圖5-4(e)軸向距離0.26m處之溫度 65 圖5-4(f)軸向距離0.36m處之溫度 65 圖5-4(g)軸向距離0.46m處之溫度 66 圖5-4(h)軸向距離0.66m處之溫度 66 圖5-4(i)軸向距離0.76m處之溫度 67 圖5-4(j)軸向距離0.86m處之溫度 67 圖5-5 Case 1 軸向速度圖 68 圖5-6 Case 1 溫度圖 69 圖5-7 Case 1 混合率與溫度放大圖 70 圖5-8 Case 2 軸向速度圖 71 圖5-9 Case 2 溫度圖 72 圖5-10 Case 2 混合率與溫度放大圖 73 圖5-11 Case 3 軸向速度圖 74 圖5-12 Case 3 溫度圖 75 圖5-13 Case 3 混合率與溫度放大圖 76 圖5-14 Case 4 軸向速度圖 77 圖5-15 Case 4 溫度圖 78 圖5-16 Case 4 混合率與溫度放大圖 79 圖5-17 Case 1 thermal NOx 生成圖 80 圖5-18 Case 2 thermal NOx 生成圖 81 圖5-19 Case 3 thermal NOx 生成圖 82 圖5-20 Case 4 thermal NOx 生成圖 83 圖5-21 Case 1、Case 2 thermal NOx 生成放大圖 84 圖5-22 Case 3、Case 4 thermal NOx 生成放大圖 85

    1. Parekh, R. D., “Handbook of Gasifiers and Gas Treatment Systems,” U.S. Department of Energy Report, UOP/SDC, McLean, Va., Contract No. DE-AC01-78ET10159, WD-TR-82/008-010, 1982.
    2. Bowman, C.T., “Control of combustion-generated nitrogen oxide emissions: technology driven by regulation,” 24th Symposium (Int.) on Combustion/The combustion Institute, 859-878, 1992.
    3. Michaud, M.G., Westmoreland, P.R. and Feitelberg, A.S., “Chemical mechanisms of NOx formation for gas turbine conditions,” 24th Symposium (Int.) on Combustion/The Combustion Institute, 879-887,1992.
    4. Fenimore, C.P. 13th Symposium (Int.) on Combustion/The Combustion Institute, 1971.
    5. De-Soete, G.G., 15th Symposium (Int.) on Combustion/The Combustion Institute, 1975.
    6. Lee, C., Lee, H.G., Ma, S.M. and Yun, Y.S., “Thermal NOx reduction of gas turbine combustor through the application of fuel staging concept,” ASME publication IECEC paper no. EI-8, 1995.
    7. Byrnes, M. A., Foumeny,E. A., Mahmud, T., Sharifah, A. S. A. K., Abbas, T., Costen, P. G., Hassan, S. and Lockwood, F.C., “ Measurements and Predictions of Nitric Oxide and Particulates Emissions from Heavy Fuel Oil Spray Flames,” 26th Symposium on Combustion, 1996.
    8. Samaniego, J. M., Labegorre, B., Egolfopoulos, F. N. and Ditaranto, M., “ Mechanism of Nitric Oxide Formation in Oxygen-Natural Gas Combustion,” 27th Symposium on Combustion, 1997.
    9. Smooke, M. D., Ern, A., Tanoff, M. A., Valdati, B. A., Mohammed, R. K., Marran, D. F. and Long, M. B., “ Computational and Experimental Study of NO in an Axisymmetric Laminar Diffusion Flame,” 26th Symposium on Combustion, 1996.
    10. Newhall, H. K. and Shahed, S. M., “ Kinetics of Nitric Oxide Formation in High-Pressure Flames,” 13th Symposium on Combustion, 1971.
    11. Starkman, E. S., Steward, H. E. and Zvonow, V. A., “ Investigation into Formation and Modification of Exhaust Emission Precursors,” SAE paper 690020, 1969.
    12. Han, Z., Uludogan, A., Hampson, G. J. and Reitz, R. D., “ Mechanism of soot and NOx Emission Using Multiple-Injection in a Diesel Engine,” SAE paper 960633, 1996.
    13. Schulz, C., Wolfrum, J. and Sick, V., “ Comparative Study of Experimental and Numerical NO Profiles in SI Combustion,” 27th Symposium on Combustion, 1997.
    14. Smoot, L. D., “Coal Gasification,” Encyclopedia of Energy Technology and the Environment, 4 Vol. Set, 1995.
    15. Hobbs, M. L., Radulovic, P. T., Smoot, L. D., “Combustion and Gasification of Coals in Fixed-Beds,” Progress in Energy and Conbustion Science, Vol. 19, pp.505-586, 1993.
    16. Biba, V., Macek, J., Klose, E., Malekha, I., “Mathematical Modelling of the Gasification of Coal Under Pressure in a Stationary Bed,” Solid Fuel Chemistry(English Translation of Khimiya Tverdogo Topliva), Vol. 11, n 5, pp.63-71, 1997.
    17. Kim, Y. J., Lee, J. M., Kim, S. D., “Coal Gasification Characteristics in an Internally Circulating Fluidized Bed With Draught Tube,” Fuel, Vol. 76, No. 11, pp. 1067-1073, 1997.
    18. Boardman, R. D., Smoot, L. D., “Prediction of Nitric Oxide in Advanced Combustion Systems,” AIChE Journal, Vol. 34, No. 9, pp.1573-1576, Sep 1988.
    19. Shinji Kambara, Takayuki Takarada, Masaru Toyoshima, Kunio Kato, “Relation Between Functional Forms of Coal Nitrogen and NOx emissions from Pulverized Coal Combustion,” Fuel, Vol. 74, No. 9, pp. 1247-1253, 1995.
    20. Eatough, C. N., “Controlled Profile Reactor Design and Combustion measurements,” Ph.D. Dissertation, Department of Mechanical Engineering, Brigham Young University, Provo, UT, 1991.
    21. Boardman, R. D., Eatough, C. N., Germane, G. J., Smoot, L. D., “Comparison of Measurements and Predictions of Flame Structure and Thermal NOx, in a Swirling, Natural Gas Diffusion Flame,” Combustion Science and Technology, Vol. 93, pp. 193-210, 1993.
    22. Tree, D. R., Black, D. L., Rigby, J. R., McQuay, M. Q., Webb, B. W., “Experimental measurements in the Byu Controlled Profile Reactor,” Progress in Energy and Combustion Science, Vol. 24, Issue 5, pp. 355-383, 1998.
    23. Heywood, J. B., “Internal Combustion Engine Fundamentals,” McGraw-Hill Company, 1988.
    24. Browman, C. T., “Kinetics of Pollution Formation and Destruction in Combustion,” Prog. Energy Combust. Sci., vol. 1, 33, 1975.
    25. Gordon S. and McBride B. J., “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, Part I. Analysis,” NASA Ref. Publ. 1311,NASA Lewis Research Center, 1994.
    26. McBride B. J. and Gordon S., “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, Part 2. Users Manual and Program Description,” NASA Ref. Publ. 1311, NASA Lewis Research Center, 1996.
    27. STAR-CD Version 3.1 Theory Manual and User Guide, Computational Dynamics Limited, 1999.
    28. Patankar, S.V., and Spalding, D.B., “A calculation procedure for heat, mass and momentum in three-dimensional parabolic flows,” Int. J. Heat Mass Transfer, Vol.15, 1972.
    29. Issa, R.I., “Solution of the implicitly discretised fluid flow equations by operator-splitting,” J. Comp. Phys., Vol.62, pp.40-65, 1986.
    30. Issa, R.I., Gosman, A.D., and Watkins, A.P., “The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme,” J. Comp. Phys., Vol.62, pp.66-82, 1986.
    31. Issa, R.I., Ahmadi Befrui, B., Beshay, K., and Gosman, A.D., “Solution of the implicitly discretised reacting flow equations by operator-splitting,” J. Comp. Phys., Vol.93, pp.388-410, 1991.
    32. Thompson, J.F., Warsi, Z.U.A., and Mastin, C.W., Numerical Grid Generation.

    下載圖示 校內:立即公開
    校外:2002-08-05公開
    QR CODE