簡易檢索 / 詳目顯示

研究生: 蘇仁彥
Su, Jen-Yen
論文名稱: 二維與三維十字型微管道之液滴生成研究
A Study of Droplet formation in Two-Dimensional and Three-Dimensional Cross Microchannels
指導教授: 李定智
Lee, Ding-Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 86
中文關鍵詞: 液滴生成兩相流三維交錯微管道
外文關鍵詞: Droplet Formation, Two Phase Flow, 3-D cross microchannel
相關次數: 點閱:152下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來微機電系統技術(MEMS)迅速發展,並引發了微全分析系統(μ-TAS)的研究,此系統具有體積小、成本低、檢測只需少量樣本、反應時間快、便於攜帶等優點,為了整合更多的功能在有限的晶片面積上,不同平面的三維結構晶片才是未來的發展潮流。
    本研究利用二維與三維十字型微管道進行液滴生成之研究,藉著改變兩工作流體在入口的流量比,可以控制液滴生成的速率及液滴的體積,並且在管道出口不唯一的情況下比較兩管道之實驗數據,試著找出三維管道是否有優於二維管道的地方,結果顯示在液滴生成的速率上,三維管道將遜於二維管道;接著進一步探討液滴形成的機制,發現在二維管道中使液滴斷裂的機制為壓阻力的影響,而三維管道中剪應力影響的機制較二維管道多;利用這些機制,配合改變毛細數(Ca)、QR值及管道深寬比(aspect ratio),可在液滴生成的控制上進行更廣泛的研究。

    Micro-Electro-Mechanical-System (MEMS) has developed rapidly in recent years, and it facilitates the study of micro total analysis system (μ-TAS). The system offers several potential advantages such as portability, low cost, small volume of samples and reagents, short reaction time, and easier to carry and so on. In order to integrate more functions in limited chip area, the three-dimensional structure chips in different plane are the future trend.
    In this study, we use two-dimensional and three-dimensional cross microchannels to research the droplet formation. Through change flow rate of two working fluid at the entrances, we can control the rate of droplet formation and the droplet size; in the case of the channels exits are not unique, we compare the experiment data of two channels, and try to find out whether the three-dimensional channel is superior to two-dimensional channel. The results show that in aspect of droplet formation rate, three-dimensional channel is inferior to two-dimensional channel. Further, we approach the mechanism of droplet formation, and detect that: in two-dimensional channel the mechanism of droplet fracture is the effect of pressure resistance, and in three-dimensional channel the shear stress is more effective than in two-dimensional channel. Make use of these mechanism with changing capillary number, QR value and aspect ratio of the channels; we can do more extensive research in droplet formation control.

    摘要.................................I Abstract............................II 目錄.................................IV 表目錄...............................VII 圖目錄...............................VIII 符號說明..............................X 第一章 緒 論.............................. 1 1-1  前言.............................. 1 1-2  研究動機.............................. 2 1-3  研究目的.............................. 3 1-4  文獻回顧.............................. 4 第二章 基 礎 理 論 與 微 管 道 設 計..............7 2-1  微尺度元件中流體力學的特性...................7 2-2  理論基礎.................................11 2-2-1 流體轉向原理[15].............................11 2-2-2 流體阻力(flow resistance)..................12 2-2-3 毛細數(Capillary number, Ca)................13 2-2-4 液滴受力.....................................14 2-3  管道設計....................................15 第三章 實 驗 系 統 設 定............................16 3-1  黃光微影製程.................................16 3-1-1 母模製作.....................................16 3-1-2 PDMS管道製作.................................22 3-2  實驗系統架構.................................23 3-2-1 實驗設備.................................23 3-2-2 實驗方法.................................24 3-2-3 工作流體參數.................................26 3-2-4 液滴生成頻率及體積計算..............................26 第四章 結 果 與 討 論.................................28 4-1  十字型微管道生成液滴的條件.........................28 4-1-1 兩相之流量在入口的大小 ............................28 4-1-2 流量比及總流量限制.................................29 4-2  二維與三維十字型微管道之比較.........................31 4-2-1 每秒產生的液滴數................................. 31 4-2-2 史卓荷數(Strouhal number, St)......................32 4-2-3 固定水量下液滴體積與油量之關係 ........................33 4-2-4 固定油量下液滴體積與水量之關係 ........................34 4-2-5 Ca、Re與液滴之關係.................................34 4-2-6 液滴生成之難易度................................. 35 4-3  液滴生成之機制................................. 36 4-4  親水、疏水性對於液滴生成的影響........................38 4-5  實驗誤差原因探討................................. 39 第五章 結 論................................. 41 5-1  總結................................. 41 5-2  未來展望 .................................43 參考文獻................................. 45 自述................................. 86

    1.M.S. Talary, J. P. H. Burt , P. Pethig, “Future trends in diagnosis using laboratory-on-a-chip technologies”, Parasitology, 117, 191-203, 1998.
    2.M. A. Burns, B. N. Johnson, S. N.Brahmasandra, K. Handique, J. R.Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo , D. T. Burke, “AnIntegrated Nanoliter DNA Analysis Device”, Science, 282, 484-487, 1998.
    3.W. Wang, Z. X. Li, R. Luo, S. H. Lu, A. D. Xu and Y. J. Yang, “Droplet-based Micro Oscillating-flowPCR Chip”, Journal of Micromechanics and Microengineering. , 15, 1369-1377, 2005.
    4.L.W. van H. Nicole, V. Oscar, M.M.L. van H. Adele, J.K. Esther, P. Ad, A. Aharoni, J. van T. Arjen, K. Jaap, “The application of DNA microarrays in gene expression analysis”, Journal of Biotechnology, 78, 271-280, 2000.
    5.F.Vinet, P. Chaton, Y. Fouillet, “Microarrays and microfluidic devices: miniaturized systems for biological analysis”, Microelectronic Engineering, 61-62, 41-47, 2002.
    6.J.P..Brody, P. Yager, R.E. Goldstein, and.R.H. Austin, “Biotechnology at low Reynolds numbers”, Biophysical Journal, 71, 3430-3441, 1996.
    7.C. Yang , D. Li, “Electrokinetic effects on pressure-driven liquid fows in rectangular microchannels”, Colloid and Interface Science, 194, 95-107, 1997.
    8.J. Tan, J.H. Xu, S.W. Li, G.S. Luo, “Drop dispenser in a cross-junction microfluidic device: Scaling and mechanism of break-up”, Chemical Engineering Journal, 136, 306–311, 2008.
    9.M. L. J. Steegmans, K. G. P. H. Schroe, and R. M. Boom, “Characterization of Emulsification at Flat Microchannel Y Junctions”, Langmuir, 25, 3396-3401, 2009.
    10.H. Liu, Y.H. Zhang, “Droplet formation in a T-shaped microfluidic junction”, Journal of Applied Physics, 106 (3). 034906, 2009.
    11.V. Cristni , Y. C. Tan , “Theory and Numerical Simulation of Droplet Dynamics in Complex Flows—a Review”, Lab on a Chip, 4, 257-264, 2004.
    12.P. Guillot , and A. Colin, “Stability of Parallel Flows in a Microchannel after a T-junction”, Phys Rev E Stat Nonlin Soft Matter Phys, 72, 066301, 2005.
    13.T. Thorsen , R. W. Roberts , F. H. Arnold , and S. R. Quake , “Dynamic Pattern Formation in a Vesicle-generating Microfluidic Device”, Physical Review, 86, 4163-4166, 2001.
    14.P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, “Formation of Droplets and Bubbles in a Microfluidic T-junction—Scaling and Mechanism of Break-up” , Lab on a Chip, 6, 437-446, 2006.
    15.R. F. Ismagilov and G. M. Whitesides, “Pressure-Driven Laminar Flow in Tangential Microchannels : an Elastomeric Microfluidic Switch”, Analytical Chemistry, 73, 4682-4687,2001.
    16.D. Lee ,Y. T. Chen and T. Y. Bai, “A study of flows in tangentially crossing micro-channels”, Microfluidics and Nanofluidics, 7:169–179, 2009.
    17.H.C. Berg, E.M. Purcell, “The physics of chemoreception”, Biophysics, 20, 193-219, 1997.
    18.S. Wereley, “Nano-Bio-Micro fluids tutorial”, Nanotechuology, 2004.
    19.O. Reynolds, “An experimentsl investigation of the circumstances which determine whether the motion if water shall be direct or sinuous and the law of resistance in parallel channels”, Philosophical Transactions of the Royal Society of London, 174, 1883.
    20.X. F. Peng, G. P. Peterson, B. X. Wang, “Frictional flow characteristics of water flowing through rextangular microchannel”, Experimental Heat transfer, 7, 249-264, 1994.
    21.Gad-el-Hak, “The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture”, Journal of Fluids Engineering, 121, 1999.
    22.P. Wu, W. A. Little, “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators”, Cryogenics, 23, 273-277, 1983.
    23.白庭育,「幾何外型對三維相切微管道流場之影響」,國立成功大學航空太空工程研究所碩士論文,民國96年7月。
    24.F. M. White, “Viscous Fluid Flow”, 3rd ed McGraw. Hill, New York, (2006).
    25.W. Kern, D.A. Poutinen, “Cleaning Solution Based on Hydrogen Peroxide for Use in Semiconductor Technology”, RCA Rev., 187-190, 1970.
    26.G.W. Rubloff, “Defect Microchemistry in SiO2 /Si Structures”, Journal of Vacuum Science & Technology A: Vacuum Surface and Films, 8, 1857-1863, 1990.
    27.N. LaBianca, J. Delorme, “High aspect ratio resist for thick film application”, Proceedings of SPIE, 2438, 846-852, 1995.
    28.張珮郁,「微流元件內表面張力驅動之流體流動現象的實驗探討」,國立成功大學航空太空工程研究所碩士論文,民國92年7月。
    29.M. D. Menech, “Modeling of Droplet Breakup in a Microfluidic T-shaped Junction with a Phase-field Model”, Physical Review E, 73, 031505, 2006.
    30.苗志銘,厲復霖,「匯流處構型對T型微流道中液滴流生成機制之影響」,中正嶺學報第三十五卷第二期,民國96年5月。

    下載圖示 校內:2016-08-16公開
    校外:2016-08-16公開
    QR CODE