簡易檢索 / 詳目顯示

研究生: 陳建伸
Chen, Chien-Shen
論文名稱: 同軸式噴嘴設計對二氧化碳雪花生成之影響
Design of Co-axial Type Injector for CO2 Snow Formation
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 131
中文關鍵詞: 氮氣輔助噴嘴氮氣輔助氣流二氧化碳雪花粒子影像分析儀粒徑分析儀二氧化碳形成腔體
外文關鍵詞: CO2 snow, formation chamber, Co-axial Type Injectornitrogen auxiliary nozzle, particle image velocimetry
相關次數: 點閱:144下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究擬探討二氧化碳雪花產生裝置在同軸型氮氣輔助噴嘴與氮氣輔助氣流作用下之效應。所採用之輔助氣流為對衝式噴流之設計,探討輔助氣流之壓力與輔助噴嘴口徑對雪花粒徑及流場之影響。雪花粒徑由Malvern粒子分析儀量測,流場以粒子影像測速儀(PIV)量測,進行流場觀察與噴霧品質診斷。實驗結果顯示當氮氣輔助噴嘴未加入氮氣,且氮氣輔助噴嘴直徑等於或小於二氧化碳雪花噴嘴出口直徑時,因噴嘴整體出口減小,使得噴流較為均勻集中,噴霧錐角減小且二氧化碳雪花之流場速度與擾動強度提高,且增大雪花粒徑並減小其雪花濃度。當氮氣輔助噴嘴加入氮氣輔助氣流,無論氮氣輔助噴嘴出口尺寸大於或小於二氧化碳雪花噴嘴直徑,皆會對其二氧化碳噴流產生影響,二氧化碳雪花流場外部因二氧化碳低溫而凝結之水氣層明顯減少,代表氮氣輔助氣流對二氧化碳雪花流場有包覆性的作用;在同尺寸之氮氣輔助噴嘴下,使用越高壓力之輔助噴流,其二氧化碳粒徑與雪花飛行速度皆上升,但其雪花濃度與噴霧錐角皆減小。在一定氮氣輔助氣流壓力下,使用越小直徑之氮氣輔助噴嘴,其變化與上述相似,二氧化碳雪花粒徑增大,二氧化碳雪花流場速度分布與擾動強度提高,但其雪花濃度及噴霧錐角皆減小。實驗結果亦顯示,使用較小直徑之氮氣輔助噴嘴及較高之氮氣輔助氣流壓力,可有效提高二氧化
    碳雪花動能與粒徑大小,並使噴霧流場更為集中,故能夠對二氧化碳雪花之粒徑及流場產生控制之效果。

    This paper investigates the characteristics of CO2 snow formation chamber with Co-axial Type Injector. The design of Co-axial Type Injector including nitrogen auxiliary nozzle in five kinds of different diameters and auxiliary opposed type nitrogen induction system with four different gas pressures has been discussed. Flow field visualization and spray quality are observed by particle image velocimetry(PIV). Result shows that when Co-axial Type Injector uses nitrogen auxiliary nozzle only without auxiliary opposed type nitrogen induction system, and the diameter of the nitrogen auxiliary nozzle is less than or equal to CO2 snow formation chamber, CO2 snow has particles with larger size, higher velocity and lower concentration, and the CO2 snow jet would be centralized by smaller channel. Result also shows that when Co-axial Type injector uses both nitrogen auxiliary nozzle and auxiliary opposed type nitrogen induction system, no matter the diameter of the auxiliary nozzle is less than or more than CO2 snow formation chamber, the injector affects CO2 snow, it could reduce water layer caused by low temperature of CO2 snow jet. At the same diameter of nitrogen auxiliary nozzle, higher pressure of nitrogen could increase CO2 snow particles and velocity; this phenomenon takes place in the same pressure of gas nitrogen with smaller nitrogen auxiliary nozzle diameter. Decreasing the diameter of nitrogen auxiliary nozzle and increasing auxiliary nitrogen pressure could enhance the snow size and velocity, reduce the concentration of CO2-snow, The CO2 snow momentum is enhanced obviously due to the acceleration of Co-axial Type Injector. The particle size and jet velocity of CO2-snow can be controlled.

    目錄 中文摘要 英文摘要 致謝 目錄 .................................................................... I 圖目錄 .............................................................. IV 表目錄 .............................................................. XI 符號說明 ...................................................................... XII 第一章 緒論 .................................................................. 1 1-1 二氧化碳清洗技術簡介 .............................................. 2 1-2 二氧化碳熱力性質 ......................................... 4 1-3 二氧化碳雪花形成原理 .............................................. 4 1-4 文獻回顧 ......................................................... 5 1-4-1 二氧化碳雪花清洗相關研究 ........................... 5 1-4-2 粒子影像測速技術 ........................................... 7 1-4-3 霧化原理與噴嘴設計 ....................................... 9 1-5 研究動機與目的 ........................................... 18 第二章 實驗設備及儀器 ............................................. 35 2-1 實驗設備 ....................................................... 35 2-1-1 噴嘴性能測試台架 ......................................... 35 2-1-2 抽氣整流系統 ................................................. 36 2-1-3 高壓液態二氧化碳供應系統 ......................... 36 2-1-4 氣態氮氣供應系統 ......................................... 36 2-1-5 二氧化碳雪花形成裝置與氮氣輔助噴嘴 ................... 36 2-2 量測儀器 ....................................................... 38 2-2-1 粒徑分析儀 ........................................ 38 RT-Sizer粒徑分析儀 .................................................. 38 2-2-2 RT-Sizer粒徑分析儀校正記錄(Calibration record) ........ 40 2-2-3 PIV粒子影像測速儀 ......................................... 41 2-3 主要量測參數 ............................................... 41 第三章實驗步驟及方法 ............................................. 54 3-1 實驗量測條件 ............................................... 54 3-2 二氧化碳雪花流場速度與擾動量之測量 .............................. 54 3-3 二氧化碳雪花流場之視流觀測 ................................. 55 3-4 RT-Sizer粒徑分析儀的量測 ......................................... 56 3-5 數據取樣與分析 ........................................... 57 第四章結果與討論 .................................................... 58 4-1 二氧化碳雪花噴流之視流實驗 ................................. 58 4-1-1 二氧化碳雪花噴流結構 ................................. 59 4-1-2 裝設氮氣輔助同軸噴嘴之二氧化碳雪花流場之速度與擾動量探討 ............................ 68 4-1-3 使用不同氮氣輔助氣流壓力之二氧化碳雪花流場速度與擾動量探討 ............................ 82 4-1-4 使用不同氮氣輔助噴嘴之二氧化碳雪花流場速度與擾動量探討 ................................ 94 4-2 二氧化碳雪花噴霧之特性研究 ............................... 104 4-2-1 二氧化碳雪花與氮氣輔助噴嘴出口尺寸之效應 ..... 104 4-2-2 二氧化碳雪花與氮氣輔助噴流壓力之關係 ............. 111 第五章 結論 .............................................................. 121 參考文獻 .................................................................... 123 圖目錄 圖1-1 二氧化碳三相圖【50】 ............................................... 20 圖1-2 二氧化碳壓力-焓關係圖 .............................................. 20 圖1-3 二氧化碳雪花形成過程 【6】 .................................... 21 圖1-4 二氧化碳雪花微粒清除示意圖 【5】【6】 ............................. 22 圖1-5 二氧化碳雪花清洗示意圖 【49】 .............................. 23 圖1-6 二氧化碳雪花應用於有機物清除之示意圖 【5】【6】 ......... 24 圖1-7 CMOS image sensor利用二氧化碳雪花清洗前後比較圖【6】 25 圖1-8 二氧化碳雪花噴流上游之雙層結構照相圖【7】 ................... 26 圖1-9 使用直管型二段噴嘴之二氧化碳雪花噴流照相圖【8】 ....... 27 圖1-10 高速流場之瞬時PIV影像與其計算後之速度場分佈圖【11】 .................................. 28 圖1-11 四種不同霧化動力型式之霧化器 【22】 ......................... 29 圖1-12 平面液膜受低速及高速氣體衝擊破裂機構 【23】 ........... 30 圖1-13 壓力式霧化器之三種液膜破裂模式 【26】 ......................... 31 圖1-14 壓力式渦旋霧化器霧化過程 【22】 ........................ 32 圖1-15 單液滴與空氣交互作用之破裂機構 .......................... 33 圖1-16 壓力式渦漩霧化器噴霧流場結構圖 【29】 ......................... 34 圖2-1 二氧化碳雪花噴射實驗系統示意圖 ............................ 44 圖2-2 二氧化碳雪花形成系統與氮氣輔助噴嘴系統示意圖 ............. 45 圖2-3 二氧化碳雪花形成系統與氮氣輔助噴嘴照相圖 ..................... 46 圖2-4 液態二氧化碳噴嘴照相圖 ........................................... 47 圖2-5 二氧化碳形成腔體 .......................................... 48 圖2-6 氮氣輔助同軸噴嘴設計參數 ....................................... 49 圖2-7 氮氣輔助噴嘴之同軸結構 ........................................... 50 圖2-8 氮氣輔助噴嘴與絕熱棉 ............................................... 51 圖2-9 RT-Sizer粒徑分析儀 ........................................... 52 圖2-10 PIV粒子影像測速儀 ........................................ 53 圖4-1 雪花形成腔體管徑10mm之雪花噴流暫態影像圖 (d0=10mm,PN2=0.00bar) ..................... 62 圖4-2 雪花形成腔體管徑10mm之雪花噴流速度向量分佈圖(d0=10mm,PN2=0.00bar) ................. 63 圖4-3 形成腔體管徑為10mm使用之雪花噴流照相圖 (d0=10mm,PN2=0.00bar) ..................... 64 圖4-4 二氧化碳雪花流場之噴流照相圖 (d0=10mm,D1=5mm,PN2=0.00bar) ............................ 65 圖4-5 二氧化碳雪花流場之雪花噴流暫態影像圖 (d0=10mm,D1=16mm,PN2=0.20bar) ................... 66 圖4-6 二氧化碳雪花流場之噴流照相圖 (d0=10mm,D1=5mm,PN2=0.05bar) ........................................ 67 圖4-7 二氧化碳雪花流場之噴流照相圖 (d0=10mm,D1=5mm,PN2=0.10bar) ........................................ 67 圖4-8 粒子影像速度分析儀雙重曝光暫態影像圖 ............................. 72 圖4-9 氮氣輔助噴嘴對二氧化碳雪花流場之平均速度分佈圖(d0=10mm,D1=16mm,18mm,20mm,PN2=0.00bar) .................. 73 圖4-10 氮氣輔助噴嘴對二氧化碳雪花流場之擾動強度分佈圖(d0=10mm,D1=16mm,18mm,20mm,PN2=0.00bar) ............................ 74 圖4-11 氮氣輔助噴嘴對二氧化碳雪花流場之平均速度分佈圖(d0=10mm,D1=10mm,PN2=0.00bar) ...................................... 75 圖4-12 氮氣輔助噴嘴對二氧化碳雪花流場之徑向平均速度分佈圖(d0=10mm,D1=10mm,PN2=0.00bar) ...................................... 76 圖4-13 氮氣輔助噴嘴對二氧化碳雪花流場之平均速度分佈圖(d0=10mm,D1=5mm,PN2=0.00bar) ........................................ 77 圖4-14 氮氣輔助噴嘴對二氧化碳雪花流場之擾動強度分佈圖(d0=10mm,D1=10mm,PN2=0.00bar) ...................................... 78 圖4-15 氮氣輔助噴嘴對二氧化碳雪花流場之徑向擾動強度分佈圖(d0=10mm,D1=10mm,PN2=0.00bar) ...................................... 79 圖4-16 氮氣輔助噴嘴對二氧化碳雪花流場之擾動強度分佈圖(d0=10mm,D1=5mm,PN2=0.00bar) ........................................ 80 圖4-17 氮氣輔助噴嘴對二氧化碳雪花流場之徑向擾動強度分佈圖(d0=10mm,D1=5mm,PN2=0.00bar) ........................................ 81 圖4-18 氮氣輔助噴嘴對二氧化碳雪花流場之平均速度分佈圖(d0=10mm,D1=16mm,PN2=0.05bar) ...................................... 85 圖4-19 氮氣輔助噴嘴對二氧化碳雪花流場之徑向平均速度分佈圖(d0=10mm,D1=16mm,PN2=0.05bar) ...................................... 86 圖4-20 氮氣輔助噴嘴對二氧化碳雪花流場之平均速度分佈圖(d0=10mm,D1=16mm,PN2=0.20bar) ...................................... 87 圖4-21 氮氣輔助噴嘴對二氧化碳雪花流場之徑向平均速度分佈圖(d0=10mm,D1=16mm,PN2=0.20bar) ...................................... 88 圖4-22 氮氣輔助噴嘴對二氧化碳雪花流場之平均擾動速度分佈圖(d0=10mm,D1=16mm,PN2=0.05bar) ...................................... 89 圖4-23 氮氣輔助噴嘴對二氧化碳雪花流場之徑向擾動速度分佈圖(d0=10mm,D1=16mm,PN2=0.05bar) ...................................... 90 圖4-24 氮氣輔助噴嘴對二氧化碳雪花流場之平均擾動速度分佈圖(d0=10mm,D1=16mm,PN2=0.20bar) ...................................... 91 圖4-25 氮氣輔助噴嘴對二氧化碳雪花流場之平均速度分佈圖(d0=10mm,D1=18mm,PN2=0.20bar) ...................................... 96 圖4-26 氮氣輔助噴嘴對二氧化碳雪花流場之平均速度分佈圖(d0=10mm,D1=16mm,PN2=0.20bar) ...................................... 97 圖4-27 氮氣輔助噴嘴對二氧化碳雪花流場之平均速度分佈圖(d0=10mm,D1=10mm,PN2=0.20bar) ...................................... 98 圖4-28 氮氣輔助噴嘴對二氧化碳雪花流場之徑向平均速度分佈圖(d0=10mm,D1=18mm,PN2=0.20bar) ...................................... 99 圖4-29 氮氣輔助噴嘴對二氧化碳雪花流場之徑向平均速度分佈圖(d0=10mm,D1=16mm,PN2=0.20bar) .................................... 100 圖4-30 氮氣輔助噴嘴對二氧化碳雪花流場之徑向平均速度分佈圖(d0=10mm,D1=10mm,PN2=0.20bar) .................................... 101 圖4-31 氮氣輔助噴嘴對二氧化碳雪花流場之平均擾動速度分佈圖 IX (d0=10mm,D1=10mm,PN2=0.20bar) .................................... 102 圖4-32 氮氣輔助噴嘴對二氧化碳雪花流場之徑向擾動速度分佈圖(d0=10mm,D1=10mm,PN2=0.20bar) .......................... 103 圖4-33 使用二氧化碳雪花噴嘴於不同氮氣輔助噴嘴噴管徑對二氧化碳雪花之雷射穿透率關係圖 ........................ 108 圖4-34 使用二氧化碳雪花噴嘴於不同氮氣輔助噴嘴噴管徑對二氧化碳雪花之DV50關係圖 ............................................... 109 圖4-35 使用二氧化碳雪花噴嘴於不同氮氣輔助噴嘴噴管徑對二氧化碳雪花之SMD關係圖 ................................................. 110 圖4-36 氮氣輔助氣流壓力對二氧化碳雪花Dv50之影響 (d0=10mm,D1=10mm) .............................................. 114 圖4-37 氮氣輔助氣流壓力對二氧化碳雪花Dv50之影響 (d0=10mm,D1=18mm) .............................................. 115 圖4-38 氮氣輔助氣流壓力對二氧化碳雪花Dv50之影響 (d0=10mm,D1=20mm) .............................................. 116 圖4-39 氮氣輔助氣流壓力於5mm、10mm之氮氣輔助噴嘴對二氧化碳雪花Dv50之影響(d0=10mm,PN2=0.05bar) ....................... 117 圖4-40 氮氣輔助氣流壓力於5mm、10mm之氮氣輔助噴嘴對二氧化碳雪花Dv50之影響(d0=10mm,PN2=0.10bar) ....................... 118 圖4-41 氮氣輔助氣流壓力於16mm、18mm、20mm之氮氣輔助噴嘴對二氧化碳雪花Dv50之影響(d0=10mm,PN2=0.05bar) .................... 119 圖4-42 氮氣輔助氣流壓力於16mm、18mm、20mm之氮氣輔助噴嘴對二氧化碳雪花Dv50之影響(d0=10mm,PN2=0.10bar) .................... 120 表目錄 表4-1 平均速度之分析表 ................................ 92 表4-2 平均擾動速度之分析表 .................................. 93

    [1] S.A. Hoening, “Cleaning surface with dry ice, Compressed Air Mag,”ED-8, pp. 22-24, 1986.
    [2] S.A. Hoening, “Dry ice snow as a cleaning media for hybrids and integrated circuits,” Hybrids Circuit Technol. ED-7, pp. 34-37, 1990.
    [3] M.M. Hills, “Carbon dioxide jet spray cleaning of molecular contaminants,” J. Vac. Sci. Technol. A, Vol. 13, No 1, pp. 30-34, 1995.
    [4] S. Banerjee and A. Campbell, “Principles and mechanisms of sub-micrometer particle removal by CO2 cryogenic technique,” J. Adhes. Sci. Technol., pp. 739-751, 2005.
    [5] Robert Sherman, “Carbon Dioxide Snow Cleaning, Particulate Sci. Technol,” Vol.25, pp. 37-57, 2007.
    [6] S.C. Yang, K.S. Huang, Y.C. Lin, “Optimization of a pulsed carbon dioxide snow jet for cleaning CMOS image sensors by using the Taguchi method, Sensors and Actuators A,” Vol. 139, pp. 265-271,
    124
    2007.
    [7] 張育仁, “Formation and Characterization of CO2-Snow Jet,” 中國機械工程學會第二十五屆全國學術研討會, 2008.
    [8] 陳軍佑, “Influence of Secondary Atomization on CO2 Snow Jet Flow Field,” 中華民國航空太空學會/中華民用航空學會聯合學術研討會, 2009.
    [9] Lourenco, L. M., Krothapalli, A., and Smith, C. A, “Particle Image Velocimetry,” Advances in Fluid Mechanics Measurements, Lecture Notes in Engineering-45, Springer-Verlag, pp. 127-200 , 1989.
    [10] Lourenco, L. M., Krothapalli, A., Buchlin, J. M., and Riethmuller, M. L, “A Non-Invasive Experimental Technique for the Measurement of Unsteady Velocity and Vorticity Fields,” AIAA Jornal, 24, pp. 1715-1717, 1986.
    [11] Lourenco, L. M., and Krothapalli A, “Stereoscopic and Time Resolved PIV Measurements in High-Speed Flows,” AIAA, 2180-2194, 2004.
    [12] Raffel, M., Willert, C. E., Kompenhans, J “Particle Image
    125
    Velocimetry–A Practical Guide,” Springer, ISBN 3-540-63683-8, 1998.
    [13] Willert, C., Raffel, M., Kompenhans, J., Stasicki, B., and La’’hler, C “Recent Applications of Particle Image Velocimetry in Aerodynamic Research”, Flow Meas. Instrum., 7(3/4). pp. 247-256, 1996.
    [14] Newbery, A. P., Rayment, T., and Grant, P. S, “A Particle Image Velocimetry Investigation of In-Flight and Deposition Behavior of Steel Droplets During Electric Arc Sprayforming,” Materials Science and Engineering A, 383, pp. 137-145, 2004.
    [15] Adrian, R. J, “Twenty Years of Particle Image Velocimetry,” Experiments in Fluids, 39, pp. 159-169, 2005.
    [16] Menon, M., and Lai, W. T., “Key Considerations in the Selection of Seed Particles for LDV measurements,” Laser Anemometry Advances and Applications, ASME, pp. 719-730, 1991.
    [17] Ikeda, Y., Nishigaki, M., Ippommatsu, M., and Nakajima, T., “Optimum Seeding Particles for Successful Laser Doppler Velocimeter Measurements,” Part. Part. Syst. Charact., 11, pp.
    126
    127-132, 1994.
    [18] Nishigaki, M., Ippommatsu, M., Ikeda, Y., and Nakajima, T., “New High-Performance Tracer Particles for Optical Gas Flow Diagnostics,” Meas. Sci. Technol., 3, pp. 619-621, 1992.
    [19] Lee, K. H., Lee, C. H., and Lee, C. S, “An Experimental Study on the Spray Behavior and Fuel Distribution of GDI Injectors Using the Entropy Analysis and PIV Method,” Fuel, 83, pp. 971-980, 2004.
    [20] Richter, B., Rottenkolber, G., Hehle, M., Dullenkopf, K., and Wittig, S., “Investigation of Fuel Sprays by Means of Stereoscopic Particle Image Velocimetry and Highspeed Visualization,” ILASS-Europe 2001, Zurich, 2-6 September, 2001.
    [21] A. H. Lefebvre, “Atomization and Sprays,” Hemisphere Publishing Corporation, New York, 1989.
    [22] A. H. Lefebvre, “Gas Turbine Combustion,” Chapter 10, Hemisphere Publishing Corporation, New York, 1983.
    [23] R. A., Jr. Castleman, “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol. 6, pp.
    127
    369-376, 1930.
    [24] N. Dombrowski and W. R. Johns, “The Aerodynamic Instability and Disintergration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol. 18, pp. 203-214, 1963.
    [25] B. E. Stapper, W. A. Sowa and G. S. Samuelsen, ”An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp. 39-45, 1992.
    [26] R. P. Fraser, ”Liquid Fuel Atomization,” Sixth Symposium(International) on Combustion, Rein-hold, New York, pp. 687-701, 1957.
    [27] G. D. Crapper, N. Dombrowski, W. P. Jepson and G. A. D. Pyott,” A note on the growth of Kelvin-Helmholtz waves on thin liquid sheets,” J. Fluid Mech., vol. 57, part 4, pp. 671-672, 1973.
    [28] H. C. Simmons, “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report No.7901/2-0, 1979.
    [29] F. R. Zhang, S. Wakabayashi and N. Tokuoka, “The Spray Structure
    128
    from Swirl Atomizer (1st Report, General Characteristics and Structure of A Spray of Swirl Atomizers),” Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, Vol. 60, No. 570, pp. 675-680, 1994.
    [30] A.A. Rizkalla ana A.H. Lefebvre,"Influence of Liquid Properties on Airblast Atomizer Spray Characteristices,” ,J.Eng.Power,pp. 173-179,April 1975.
    [31] A.A Rizkalla and A.H. Lefebvre, ”The Influence of Air and Liquid Properties on Airblast Atomization,” J. Fluids Eng.,vol. 97, pp. 316-320, 1975
    [32] Rizk, N. K. and Lefebvre, A. H., “Influence of Atomizer Design Feature on Mean Drop Size,” AIAA Journal, Vol. 21, No. 8, pp. 1139-1142, 1983.
    [33] Beck, J., Lefebvre, A. H., and Koblish, T., “Air Blast Atomization at Conditions of Low Air Velocity,” Paper No, AIAA, 89-0217, 1989.
    [34] J. E. Beck, A. H. Lefebvre and T. R. Koblish, “Liquid Sheet Disintegration by Impinging Air Streams, ”Atomization and Sprays,
    129
    Vol. 1, No. 2, pp. 155-170, 1991.
    [35] J. E. Beck and A.H. Lefebvre, "Airblast Atomization at Conditions of Low Air Volcity,"J.Propulsion, vol. 7, NO. 2, March-April 1991.
    [36] M. Aligner and S. Wittig," Swirl and Counterswirl Efferts in Prefilming Airblast Atomization,” Trans. ASME, J. Eng. Power,vol. 102, pp.706-710, 1980.
    [37] Dorman , R. G. “The Atomization of Liquid in a Flat Spray , ”British J. Appl. Phys. , Vol. 3 , pp. 189-192 , 1952.
    [38] Fraser, R. P. Eisenklam , P. Dombrowski , N. and Hasson , D.“Drop Formation from Rapidly Moving Sheets , ”A. I. Ch.E. J., Vol. 8, No. 5, pp. 672-680, 1962.
    [39] Dombrowski, N. and John, W. R. “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci ., Vol. 18 , pp. 203-214 ,1963.
    [40] Sattelmayer, T. and Witting, S., “Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power,
    130
    Vol. 108, pp. 465-472, 1986.
    [41] N.K. Rizk and A.H. Lefebvre, "Spray Characteristics of Plain-ject Airblast Atomizer , " Transtion of The Asme vol. 106 , July 1984.
    [42] C.Press,A.K.Gupta ,and H.G. Semerjian,"Aerodynamic Effects on Fuel Spray Characteristics:Air-assist Atomizer , " HTD-vol. 104 , pp. 111-119 , 1988.
    [43] Lin, T. C, “Production of Metal Powder by Atomization Processes with Internal Impinging Mechanism,” Ph.D. dissertation, IAA, National Cheng Kung University, Taiwan, R.O.C, 2006.
    [44] Muh-Rong Wang, Tien-Chu Lin, Teng-San Lai, Ing-Ren Tseng, “Atomization Performance of an Atomizer with Internal Impingement,” JSME International Journal, Series II, Vol. 48, No. 4, pp.858-864, 2005.
    [45] Whitlow, J. D., and Lefebvre, A. H, “Effervescent Atomizer Operation and Spray Characteristics,” Atomization and Sprays, 3, pp. 137-156, 1993.
    [46] Nguyen, D. A., and Rhodes, M. J, “Producing Fine Drops of Water
    131
    by Twin-Fluid Atomisation,” Powder Technology, 99, pp. 285-292, 1998.
    [47] Guo, L. J., Li, G. J., Chen, B., Chen, X. J., Papailiou, D. D., and Panidis, T, “Study on Gas-Liquid Two-Phase Spraying Characteristics of Nozzles for the Humidification of Smoke,” Experimental Thermal and Fluid Science, 26, pp. 715-722, 2002.
    [48] 郭子禎,”環保洗淨新技術-CO2的神奇應用,”科學發展,400期,pp.30-35,2006年4月.
    [49] http://www.co2clean.com/index.html
    [50] http://www.chemicalogic.com/download/phase_diagram.html

    下載圖示 校內:2012-08-25公開
    校外:2012-08-25公開
    QR CODE