| 研究生: |
邱勝彬 Chiou, Sheng-Bin |
|---|---|
| 論文名稱: |
奈米壓痕實驗應用於薄膜界面附著性質及殘留應力釋放之研究 The Study of Interface Adhesion Properties and Release Residual Stresses via Nanoindentation Experiments |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 脫層 、挫曲 、應變能釋放率 、類鑽碳 、殘留應力 |
| 外文關鍵詞: | DLC, Residual stress, Strain energy release rate, Buckle, Delamination |
| 相關次數: | 點閱:126 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為奈米壓痕實驗應用於薄膜界面附著性質及殘留應力釋放之研究。內容主要可以分為三個部份:第一個部份為利用輝光放電分光儀(GDS)、拉曼光譜(Raman Spectrum)、聚焦離子束(Focus Ion Beam)與奈米壓痕試驗來檢測利用高功率磁控脈衝電漿源濺鍍法所鍍製之類鑽碳膜之薄膜機械性質。利用輝光放電分光儀作薄膜成份分析,觀察C元素之濺射深度,藉以判斷薄膜沉積厚度與過渡層之深度。再加上利用聚焦離子束將試片做剖面分析,藉以映證輝光放電分光儀成份分析C元素深度之準確性,以及確定所鍍製之薄膜的平整性與緻密性。再以拉曼光譜分析,類鑽碳膜的鑽石成份(sp3)與石墨成份(sp2)之比例,藉以來確定此類鑽碳膜成份是否接近鑽石。再藉由奈米壓痕試驗來量測薄膜之機械性質。結果顯示,利用聚焦離子束將試片剖面切開所觀察之沉積層的厚度與輝光放電檢測結果相當接近,且無論是厚度與表面形貌都有極佳的均勻性。
第二部份要為薄膜的附著性質之估算,利用週期性之動態負載奈米壓痕試驗,驅使薄膜產生突進(Pop-in)現象,在脫層之後其力-位移曲線會有相位落後之現象產生,將向位落後移除後其力-位移曲線之會成一線性之行為,用此結果去估算薄膜之附著性質。由實驗結果顯示,此次鍍膜的應變能釋放率相當高;若非經由週期性負載作用加上使用較尖銳的壓頭(Cube corner),試件並不會發生脫層現象。
第三部份為殘留應力釋放之研究分析,利用奈米壓痕試驗機,設定一連續震盪負載,使薄膜產生脫層的現象,在脫層發生同時,薄膜內殘留應力也會隨之釋放出來,利用負載斷與卸載段之線性行為,將薄膜殘留應力估算出來。同時再利用不同震盪頻率之週期性負載,來檢視薄膜殘留應力是否會因施工條件不同,而造成估算的結果不同。再利用週期性動態負載,所量測之壓痕應力與殘留應力,去分析挫曲後造成薄膜隆起之行為與估算其應變能釋放率。由實驗結果顯示,有發生挫曲之情形者,其殘留壓深幾乎會回到原始壓深之點,且其應變能釋放率會較無發生挫曲之情形要來的高。
The aim of this paper is to study interface adhesion properties and release residual stresses via nanoindentation experiments. In the first part, glow discharge spectrometer(GDS)、Raman spectrum、focus ion beam and nanoindentation is used to detected Diamond-like-carbon mechanism properties deposited by high power impulse magnetron sputtering(HIPIMS). By using GDS thin film composition analysis to detect carbon sputtering depth, the thin thickness and overlap layer thickness can be known. By using focus ion beam, the carbon depth can be measure specific and the thin film’s smoothness and tightness can be known. Through the Raman spectrum analysis, the ratio of sp3 and sp2 in diamond-like-carbon can be measure. The ratio is to check that whether thin film composition is near diamond’s composition. The nanoindentation test is to measure mechanical properties of thin film. The results, film thickness, of two experiments, which are GDS and FIB are close. Also the thickness and surface smoothness are good.
In the part of estimation of thin film’s adhesion property, cyclic dynamic loading nanoindentation test forces the pop-in phenomenon which happens on thin film. After delamination the force-depth curve may have phase lag phenomenon. By removing the phase lag force-depth curve, the adhesion property of thin film can be measure. As the result shows, the strain energy release rate of thin film is high. The test may not delaminate without cyclic dynamic loading and using sharp indenter.
In the of residual stress release analysis, using nanoindentation test and cyclic dynamic loading, the thin film delaminates. When the thin film delaminates the residual stress in thin film may release. The residual stress can be calculated by the linear behavior of force-depth curve. Whether the difference frequency of cyclic dynamic loading may cause different residual stress of thin film is negative. Then by using cyclic dynamic loading, the buckle behavior and strain energy release rate can be analyzed by indentation stress and residual stress. According to the results, the residual depth may come back to the initial indenting point when the buckling of thin film happens. Also, the strain energy release rate may be higher when the buckling of thin film happens than when the buckling of thin film does not happen.
[1]K. L. Johnson, Contact mechanics, Cambridge University Press, 1985.
[2]H. Hertz, Miscellaneous Papers, London, Macmillan, 1896.
[3]W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Material Research, 7 (1992) 1564.
[4]W. C. Oliver and G. M. Pharr, “Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology ,” Journal of Material Research, 19 (2004) 3.
[5]D. B. Marshall and A. G. Evans, J Appl Phys, 56 (1984) 2632.
[6]B. D. Beake and J. F. Smith, “Nano-impact testing—an effective tool for assessing the resistance of advanced wear-resistant coatings to fatigue failure and delamination,” Surface and Coatings Technology, (2004) 188 594.
[7]B. D. Beake, S. P. Lau and J, F, Smith, “Nanoscale repetitive impact testing of polymer films,” Joural of Materials Research, 19 (2004) 237.
[8]B. D. Beake, S. P. Lau and J, F, Smith, “Evaluating the fracture properties and fatigue wear of tetrahedral amorphous carbon films on silicon by nano-impact testing”, Surface and Coatings Technology, (2004) 177 611.
[9]魏伯任, “奈米壓痕實驗運用於塊材、覆膜材料機械性質以及硬脆材料黏彈性質量測-理論分析與實驗驗證”, 國立成功大學, 博士論文, 2005.
[10]P. Waters and A. A. Volinsky, “Stress and Moisture Effects on Thin Film Buckling Delamination,” Experimental Mechanics, 47 (2006) 163.
[11]M. Williams, B. Griffin, B. Homeijer, B. Sankar and M. Sheplak, IEEE SENSORS Conference, (2007) 349.
[12]J. Yan, X. Chen and A. M. Karlsson, “Determining Equi-Biaxial Residual Stress and Mechanical Properties from the Force-Displacement Curves of Conical Micro- indentation,” J Eng Mater Tech, 129 (2007) 200.
[13]P. J. Wei, W. L. Liang, C. F. Ai and J. F. Lin, “A new method for determining the strain energy release rate of an interface via force–depth data of nanoindentation tests,” Nanotechnology,19 (2008) 7.
[14]J. C. Li, “Impression creep and other localized tests,” Mater. Sci. Eng. A, 322 (2002) 23.
[15]P. J. Wei, Y. C. Wang and J. F. Lin, “Retardation of cyclic Indentation creep exhibited in metal alloys,” J. Mater. Res., 23 (2008) 2650.
[16]R. Schellin, G. Hess, W. Kuhnel, C. Thielemann, D. Trost, J. Wacker and R. Steinmann, 1994, “A new analytical solution for diaphragm deflection and its application to a surface-micromachined pressure sensor,” Sensors Actuators A, 41 (1994) 287.
[17]A. A.Griffith, Trans R Soc Lond, (1920) 163.
[18]J. W. Hutchinson and Z. Suo, Adv Appl Mech, 29(1992) 63.
[19]S. Suresh and A. E. Giannakopoulos, “A new method for estimating residual stress by instrumented sharp indenter,” Acta Mater, 46 (1998) 5755.
[20]J. G. Swadener, B. Taljat and G. M. Pharr, “Measurement of residual stress by load and depth sensing indentation with spherical indenters ,” J Mater Res, 16 (2001) 2091.
[21]Y. H. Lee and D. Kwon, “Residual stress in DLC/Si and Cu/Si systems: Application of a stress-relaxation model to the nanoindentation technique,” J Mater Res, 17 (2002) 901.
[22]Y. H. Lee and D. Kwon, “Measurement of residual-stress by nanoindentation on elastically strained (100) W ,” Scr Mater, 49 (2003) 459.
[23]K. O. Kese, Z. C. Li and B.Bergman, “Influence of residual stress on elastic modulus and hardness of soda-lime glass measured by nanoindentation,” J Mater Res, 19 (2004) 3109.
[24]Y. H. Lee and D. Kwon, “ Estimation of biaxial surface stress by instrumented indentation with sharp indenters,” Acta Mater, 53 (2004) 1555.
[25]J. Yan, X. Chen and A. M. Karlsson, “Determining Equi-Biaxial Residual Stress and Mechanical Properties from the Force-Displacement Curves of Conical Micro- indentation,” J Eng Mater Tech, 129 (2007) 200.
[26]A. G. Evans, J. W. Hutchinson, Int J Solids Struct, 20 (1984) 455.
[27]L. G. Rosenfeld, J. E. Ritter, T. J. Lardner and M. R. Lin, J Appl Phys, 67 (1990) 3291.
[28]J. J. Vlassak, M. D. Drory and W. D. Nix, J Mater Res, 12 (1997) 1900.
[29]Hysitron Incorporation, http://www.hysitron.com/.
[30]E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi and
Z. Sun, J Appl Phys, 86 (1999) 6078.
[31]A.A. Volinsky, N.R. Moody and W.W. Gerberich, “Interfacial toughness for thin films on substrates,” Acta Materialia, 50 (2002) 441.