簡易檢索 / 詳目顯示

研究生: 王聖博
Wang, Sheng-Bo
論文名稱: 一維金奈米顆粒鑲入氧化矽奈米線之電子傳導、光電導與氣體感測之研究
Electronic transport, photoconductivity and gas sensing properties in Au peapodded silica nanowires
指導教授: 張守進
Chang, Shoou-Jinn
共同指導教授: 陳貴賢
Chen, Kuei-Hsien
林麗瓊
Lin, Li-Chyong
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 106
中文關鍵詞: 氧化矽奈米線表面電漿子光電傳導氣體感測
外文關鍵詞: silica, nanowire, surface plasmon resonance, photoconductivity and gas sensing
相關次數: 點閱:149下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究單根金奈米顆粒嵌入氧化矽奈米線的電性相關特性,此金奈米顆粒與氧化矽複合奈米線是利用微波電漿化學氣相沉積技術合成。單根奈米線元件的製作是使用電子束微影技術與聚焦離子束顯微系統完成。我們發現此氧化矽奈米線的電導率可藉由嵌入的金奈米顆粒的數量調制。從低溫電導率量測結果顯示,金奈米顆粒嵌入氧化矽奈米線之電子傳輸機制是由於電子在能帶的邊緣跳躍(band tail hopping),主導整個電子傳輸。由於表面電漿共振效應,光響應的吸收峰會隨著嵌入氧化矽中的金形狀而改變,而此嵌入金的形狀可由成長奈米線的成長時間控制。根據時域有限差分法(Finite difference time domain,FDTD)模擬結果顯示金奈米顆粒嵌入氧化矽奈米線的電子場分佈圖符合光響應量測的結果。單根金奈米顆粒嵌入氧化矽奈米線元件也呈現出高的光波長選擇特性,光響應波段在約500nm處,同時也具有高的光傳導增益(photoconductive gain: 2×104)與較快的上升(~141μs)和回覆(~298μs)反應的時間常數(time constant)。此種金奈米顆粒嵌入無晶型態之氧化矽奈米線具有特殊的高的光傳導增益(photoconductive gain)與光電傳輸機制也在此篇論文中進行詳細的討論。
    金奈米顆粒嵌入氧化矽奈米線具有獨特的吸收峰在可見光的範圍是由於表面電漿子共振的效應,此種特殊的特性應用於氣體感測器也在此篇論文提出。我們發現在室溫下進行量測,金奈米顆粒嵌入氧化矽奈米線元件在可見光(532nm)照耀下,由於表面電漿共振的效應可增進氣體感測的特性,同時也觀察到複合奈米線具有較好的氣體感測選擇性。主要針對氧氣有較好的感測能力。金奈米顆粒嵌入氧化矽奈米線氣體感測元件在可見光照耀下,可同時增進氣體感測能力與氣體感測響應的回覆時間,這是因為照光下產生的電洞與氧氣產生化學反應,使得氧氣分子較容易脫附於奈米線表面。 在可見光照下可增進氣體感測元件之氣體感測特性與電子傳輸機制也在此篇論文中討論,這種方式也開啟了未來應用於生物感測元件的新的路線。最後,我們所合成之大面積金奈米顆粒嵌入氧化矽奈米線提供了新的方式去增進電子的傳導特性與氣體感測能力。這個結果意謂著此複合奈米線可應用於未來奈米尺度下的光電元件與感測器元件。

    We have studied the electrical properties of the single Gold-nanoparticles embedded silica nanowire (Au-NPs@silica NW), which was synthesized by chemical vapor deposition. The individual nanowire device was fabricated by E-beam lithography technique. Dark conductivity of the gold-peapodded silica nanowire can be adjusted by controlling the number of metal nanoparticles incorporated. The temperature-dependent conductivity measurement reveals that band tail hopping mechanism dominates the electron transport in the gold-peapodded silica nanowires. Furthermore, due to surface plasmon resonance (SPR) effect the photo-responsivity peak strongly dependents on the shape of the embedded gold nanostructures in silica nanowire in which the shape can be modified by controlling the growth time of Au-silica NWs. Finite difference time domain (FDTD) simulation shows that the electric field distribution profiles of Au-silica composite nanowire supports the photo-responsivity spectrum results. The photodetector performance of the Au-NPs@silica nanowire is investigated. The single Au-NPs@silica nanowire exhibits unique photo-responsivity at visible range (500nm), high selectivity, high photoconductive gain (2×104) and very fast rise (141μs) and decay (298μs) time constant. Moreover, mechanism for the high photoconductivity gain is also discussed.
    An intriguing system of wide band gap silica nanowire (SiOx NW) that absorbs visible light (532 nm) via surface plasmons of embedded gold nanoparticles (Au-NPs) is reported for sensing applications. We report the surface plasmon resonance–enhanced molecular oxygen sensing by single Au-NPs@silica NW under 532 nm illumination (visible light) at room temperature. Excellent selectivity of the Au-NPs@silica NW to molecular oxygen, in air, has been demonstrated. Illumination improved the sensing properties in terms of response, and fast recovery time which can be attributed to the photo-generated hole mediated oxygen desorption. A general strategy of light modulated sensing, vis-à-vis dark, is demonstrated in a wide bandgap single NW system that could potentially open up routes for biosensing since silica and gold are both free of known bio-toxicity. Finally, the Au embedded amorphous silica nanowires has provided new approach to enhance not only the electron conduction, but also the chemical-sensor response/sensitivity. This result also implies that the Au-NPs@silica nanowire can be applied for future nanoscale opteelectronic devices.

    Contents Chapter 1-Introduction 1 1.1 Background and Motivation 1 1.2 Organization of dissertation 7 Chapter 2-Related theories and mechanism 9 2.1 Growth mechanism of the peapodded nanowires 9 2.1.1 Rayleigh Instability 9 2.1.2 Growth of Au-NPs-embedded silica nanowires 11 2.2 Surface Plasmon resonance 14 2.3 Electrical transport in disorder material 17 2.4 Photocurrent Gain 20 2.5 Material Characterization of the Au-NPs peapodded silica nanowires 22 2.6 Anisotropic surface plasmon in Au-NPs-embedded silica nanowires 25 2.7 Surface plasmon intensity profiles with three selected excitation energy 28 Chapter 3-Experiment detail 30 3.1 Nanowire preparation 31 3.2 fabrication of single nanowire device 33 3.2.1 Focused-ion-beam (FIB) technique for fabrication device 33 3.2.2 Electron-beam lithography for fabrication device 34 3.3 sample characterization 37 3.3.1 Structural and morphology characterization 37 3.3.2 Electrical property measurement 37 3.3.3 Low temperature electrical transport measurement 38 3.3.4 Photocurrent measurement 39 Chapter 4-Results and discussion 40 4.1 Gold nanoparticles-modulated conductivity in gold peapodded silica nanowire 40 4.1.1 Basic characterization of Au-peapodded silica nanowire 40 4.1.2 Dark electron transport mechanism 45 4.1.3 Summary 54 4.2 SPR-induced Color-selective Au-peapodded Silica Nanowire Photodetectors with High Photoconductive Gain 55 4.2.1 Basic characterization of Au-peapodded silica nanowire 55 4.2.2Wavelength selectivity 57 4.2.3 Photocurrent intensity and photoresponse speed 63 4.2.4 Photoconductive gain 65 4.2.5 Summary 69 4.3 Surface Plasmon-Enhanced Gas Sensing in Single Gold peapodded-Silica Nanowire 70 4.3.1 Dark and photocurrent measurement 70 4.3.2 Finite difference time domain (FDTD) simulation in nanowire 74 4.3.2 Gas sensing measurement under dark and illumination 75 4.3.3 O2 sensing mechanism in Au peapodded silica nanowire 82 4.3.4 Summary 85 Chapter 5-Conclusion 86 Chapter 6-Future of work vision 88 Reference 89 Reference for chapter 1 89 Reference for chapter 2 95 Reference for chapter 3 98 Reference for chapter 4 98 Reference for chapter 6 101

    Reference for chapter 1

    [1] N. S. Ramgir, Y. Yang, and M. Zacharias, "Nanowire-Based Sensors," Small vol. 6, pp. 1705-1722 2010.
    [2] M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, "Photosensitive gold-nanoparticle-embedded dielectric nanowires," Nature Materials, vol. 5, pp. 102-106, 2006.
    [3] J. S. Wu, S. Dhara, C. T. Wu, K. H. Chen, Y. F. Chen, and L. C. Chen, "Growth and Optical Properties of Self-Organized Au2Si Nanospheres Pea-Podded in a Silicon Oxide Nanowire," Advanced Materials, vol. 14, pp. 1847-1850, 2002.
    [4] A. Z. Jin, Y. G. Wang, and Z. Zhang, "Synthesis and characterization of Cu/SiO2-x composite nanowires," Journal of Crystal Growth, vol. 252, pp. 167-173, 2003.
    [5] M. Paulose, O. K. Varghese, and C. A. Grimes, "Synthesis of Gold-Silica Composite Nanowires through Solid-Liquid-Solid Phase Growth," J. Nanosci. Nanotech., vol. 3, pp. 341-346, 2003.
    [6] K. Wwang, S. Y. Chung, and D. Kim, "Morphology of Si nanowires fabricated by laser ablation using gold catalysts," Appl. Phys. A, vol. 79, pp. 895-897, 2004.
    [7] X. N. Zhang, Z. Zhang, and C. R. Li, "Growth of one-dimensional Ag/Si/SiOx capsule nanostructures by self-assembled SiOx template," Appl. Phys. A, vol. 81, pp. 163-167, 2005.
    [8] C.-K. Tsung, W. Hong, Q. Shi, X. Kou, M. H. Yeung, J. Wang, and G. D. Stucky, "Shape- and Orientation-Controlled Gold Nanoparticles Formed within Mesoporous Silica Nanofibers," Adv. Funct. Mater., vol. 16, pp. 2225-2230, 2006.
    [9] F. M. Kolb, A. Berger, H. Hofmeister, E. Pippel, U. Gösele, and M. Zacharias, "Periodic chains of gold nanoparticles and the role of oxygen during the growth of silicon nanowires," Appl. Phys. Lett., vol. 89, p. 173111, 2006.
    [10] S. E. Hunyadi and C. J. Murphy, "Tunable One-Dimensional Silver-Silica Nanopeapod Architectures," J. Phys. Chem. B, vol. 110, pp. 7226-7231, 2006.
    [11] S. Y. Chung, J. H. Chun, and D. E. Kim, "Fabrication of Silicon Oxide Nanowires Embedded with Au Nanoparticle or Au Nanowire:Its Use as Template to Hollow Silica Nanotube," J. Nanosci. Nanotechnol., vol. 8, pp. 1-3, 2008.
    [12] C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, "Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires," Nano Letters, vol. 8, pp. 3081-3085, 2008.
    [13] J. W. Tringe, G. Vanamu, and S. H. Zaidi, "Templated control of Au nanospheres in silica nanowires," J. Appl. Phys., vol. 104, p. 094317, 2008.
    [14] J. Qia and Y. Masumoto, "Copper silicide nanocrystals in silicon nanowires," Materials Research Bulletin, vol. 36, pp. 1407-1415, 2001.
    [15] L. Shi, Y. M. Xu, and Q. Li, "Fabrication of nanopeas with ZnSe-filled SiO2 nanotube/nanowire configuration," Nanotechnology, vol. 16, pp. 2100-2103, 2005.
    [16] S. Luo, L. Yao, W. Chu, J. Shen, Z. Zhang, JingboLi, J. Yi, R. Yu, W. Zhou, and S. Xie, "InN/In2O3 peapod nanostructures and conformal conversion templated from InN counterparts via thermal oxidation," Nanotechnology, vol. 18, p. 235605, 2007.
    [17] W. Zhu, G. Wang, X. Hong, X. Shen, D. Li, and X. Xie, "Metal nanoparticle chains embedded in TiO2 nanotubes prepared by one-step electrodeposition," Electrochimica Acta, vol. 55, pp. 480-484, 209.
    [18] P. Utko, R. Ferone, I. V. Krive, R. I. Shekhter, M. Jonson, M. Monthioux, L. N. é, and J. N. å. rd, "Nanoelectromechanical coupling in fullerene peapods probed by resonant electrical transport experiments," Nat. Commun., vol. 1:37, pp. 1-6, 2010.
    [19] W. W. Zhou, L. Sun, T. Yu, J. X. Zhang, H. Gong, and H. J. Fan, "The morphology of Au@MgO nanopeapods," Nanotechnology, vol. 20, p. 455603, 2009.
    [20] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, "Demonstration of a spaser-based nanolaser," Nature vol. 460, pp. 1110-U68, AUG 2009.
    [21] J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, M.R. Wasielewski, and T. W. Odom, "Plasmonic Bowtie Nanolaser Arrays," Nano Letters, vol. 12, pp. 5769-5774, NOV 2012.
    [22] S. E. Lee, D. Y. Sasaki, Y. Park, R. Xu, J. S. Brennan, M. J. Bissell, and L. P. Lee, "Photonic Gene Circuits by Optically Addressable siRNA-Au Nanoantennas," ACS Nano, vol. 6, pp. 7770-7780, SEP 2012.
    [23] J. F. Li, X. D. Tian, S. B. Li, J. R. Anema, Z. L. Yang, Y. Ding, Y. F. Wu, Y. M. Zeng, Q. Z. Chen, B. Ren, Z. L. Wang, and Z. Q. Tian, "Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy," Nature Photonics, vol. 8, pp. 52-65, JAN 2013.
    [24] J. Wang, Y. J. Lee, A. S. Chadha, J. Yi, M. L. Jespersen, J. J. Kelley, H. M. Nguyen, M. Nimmo, A. V. Malko, R. A. Vaia, W. D. Zhou, and J. W. P. Hsu, "Effect of Plasmonic Au Nanoparticles on Inverted Organic Solar Cell Performance," Journal of Physical Chemistry C, vol. 117, pp. 85-91, JAN 2013.
    [25] E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science, vol. 311, pp. 189-193, 2006.
    [26] P. Mazzoldi, G. W. Arnold, G. Bertoncello, R. Bertoncello, and F. Gonella, "Peculiarities and application perspectives of metal-ion implants in glasses," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 91, pp. 478-492, 1994.
    [27] G. W. Arnold, G. D. Marchi, F. Gonella, P. Mazzoldi, A. Quaranta, G. Battaglin, M. Catalano, F. Garrido, and R. F. H. Jr., "Formation of nonlinear optical waveguides by using ion-exchange and implantation techniques," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 116, pp. 507-510, 1996.
    [28] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, "Demonstration of a spaser-based nanolaser," Nature, vol. 460, pp. 1110-1112, 2009.
    [29] K. Xu, L. Qin, and J. R. Heath, "The crossover from two dimensions to one dimension in granular electronic materials," Nature Nanotechnology, vol. 4, pp. 368-372, 2009.
    [30] A. V. Moskalenko, S. N. Gordeev, O. F. Koentjoro, P. R. Raithby, R. W. French, F. Marken, and S. E. Savel'ev, "Nanomechanical electron shuttle consisting of a gold nanoparticle embedded within the gap between two gold electrodes," Phys. Rev. B, vol. 79, pp. 241403(R), 2009.
    [31] P. Y. Lai and J. S. Chen, "Electrical bistability and charge transport behavior in Au nanoparticle/poly(N-vinylcarbazole) hybrid memory devices " Applied Physics Letters, vol. 93, p. 153305, 2008.
    [32] J. S. Lee, J. Cho, C. Lee, I. Kim, J. Park, Y. M. Kim, H. Shin, J. Lee, and F. Caruso, "Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties," Nature Nanotechnology, vol. 2, pp. 790 - 795, 2007.
    [33] S. Link, M. B. Mohamed, and M. A. El-Sayed, "Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant," J. Phys. Chem. B, vol. 103 pp. 3073-3077, 1999.
    [34] H. Han, N. D. Theodore, and T. L. Alford, "Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer," Journal of Applied Physics, vol. 103, p. 013708, 2008.
    [35] A. Devenyi, R. Manaila-Devenyi, and R. M. Hill, "Hopping Conduction through Localized States in Nb/Al2O3 Films," Physical Review Letters, vol. 29, pp. 1738-1741, 1972.
    [36] P. H. Chen, C. H. Hsieh, S. Y. Chen, C. H. Wu, Y. J. Wu, L. J. Chou, and L. J. Chen, "Direct Observation of Au/Ga2O3 Peapodded Nanowires and Their Plasmonic Behaviors," Nano Letters, vol. 10, pp. 3267-3271, 2010.
    [37] H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Materials, vol. 9, pp. 205-213, 2010.
    [38] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nature Materials, vol. 9, p. 368, 2010.
    [39] H. Nakanishi, K. J. M. Bishop, B. Kowalczyk, A. Nitzan, E. A. Weiss, K. V. Tretiakov, M. M. Apodaca, R. Klajn, J. F. Stoddart, and B. A. Grzybowski, "Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles," Nature vol. 460, pp. 371-375, 2009.
    [40] M.-S. Son, J.-E. Im, K.-K. Wang, S.-L. Oh, Y.-R. Kim, and K.-H. Yoo, "Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles," Applied Physics Letters, vol. 96, p. 023115, 2010.
    [41] C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, "A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots," Nano Letters, vol. 10, pp. 1704-1709, 2010.
    [42] P. Banerjee, D. Conklin, S. Nanayakkara, T.-H. Park, M. J. Therien, and D. A. Bonnell, "Plasmon-Induced Electrical Conduction in Molecular Devices," ACS Nano, vol. 4(2), pp. 1019–1025, 2010.
    [43] G. Konstantatos and E. H. Sargent, "Nanostructured materials for photon detection," Nature Nanotechnology, vol. 5, pp. 391–400, 2010.
    [44] D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Applied Physics Letters, vol. 86, p. 063106, 2005.
    [45] H. Han, N. D. Theodore, and T. L. Alford, "Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer " Journal of Applied Physics, vol. 103, p. 013708, 2008.
    [46] E. Moulin, P. Luo, B. Pieters, J. Sukmanowski, J. Kirchhoff, W. Reetz, T. Müller, R. Carius, F.-X. Royer, and H. Stiebig4, "Photoresponse enhancement in the near infrared wavelength range of ultrathin amorphous silicon photosensitive devices by integration of silver nanoparticles " Applied Physics Letters, vol. 95, p. 033505, 2009.
    [47] P. Q. Luoa, E. Moulina, J. Sukmanowskic, F.X. Royerd, X.M. Doub, and H. Stiebiga, "Enhanced infrared response of ultra thin amorphous silicon photosensitive devices with Ag nanoparticles," Thin Solid Films, vol. 517, p. 6256, 2009.
    [48] S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photonics, vol. 1, pp. 641-648, 2007.
    [49] I. D. Vlaminck, P. V. Dorpe, L. Lagae, and G. Borghs, "Local electrical detection of single nanoparticle plasmon resonance " Nano Letters, vol. 7, pp. 703-706, 2007.
    [50] M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, "Photodetection with Active Optical Antennas," Science, vol. 332, pp. 702-704 2011.
    [51] Y.-J. Wu, C.-H. Hsieh, P.-H. Chen, J.-Y. Li, L.-J. Chou, and L.-J. Chen, "Plasmon Resonance Spectroscopy of Gold-in-Gallium Oxide Peapod and Core/Shell Nanowires," ACS Nano, vol. 4(3), pp. 1393-1398, 2010.
    [52] C.-T. Wu, M.-W. Chu, S.-B. Wang, M.-S. Hu, K.-H. Chen, L.-C. Chen, C.-W. Chen, and C.-H. Chen, "Anisotropic surface plasmon excitation in Au/silica nanowire," Applied Physics Letters, vol. 96, p. 263106, 2010.
    [53] S.-B. Wang, C.-H. Hsiao, S.-J. Chang, K.-T. Lam, K.-H. Wen, S.-J. Young, S.-C. Hung, and B.-R. Huang, "CuO Nanowire-Based Humidity Sensor," IEEE Sens. J., vol. 12, p. 1884, Jun 2012.
    [54] R.-S. Chen, S.-W. Wang, Z.-H. Lan, J. T.-H. Tsai, C.-T. Wu, L.-C. Chen, K.-H. Chen, Y.-S. Huang, and C.-C. Chen, "On-chip fabrication of well-aligned and contact-barrier-free GaN nanobridge devices with ultrahigh photocurrent responsivity," Small, vol. 4, pp. 925-929, 2008.
    [55] D. Jana, L.-C. Chen, Chun-WeiChen, S. Chattopadhyay, and K.-H. Chen, "A first principles study of the optical properties of BxCy single wall nanotubes " Carbon, vol. 45, pp. 1482-1491, 2007.
    [56] Y.-G. Lin, Y.-K. Hsu, S.-Y. Chen, L.-C. Chen, and K.-H. Chen, "Microwave-activated CuO nanotip/ZnO nanorod nanoarchitectures for efficient hydrogen production " J. Mater. Chem., vol. 21, pp. 324-326, 2011.
    [57] C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, "Chemistry and Properties of Nanocrystals of Different Shapes," Chem Rev., vol. 105, pp. 1025-1102, 2005.
    [58] J. B. K. Law and J. T. L. Thong, "Improving the NH3 gas sensitivity of ZnO nanowire sensors by reducing the carrier concentration," Nanotechnology, vol. 19, p. 205502, 2008.
    [59] D. M. Russell, C. J. Newsome, S. P. Li, T. Kugler, M. Ishida, and T. Shimoda, "Blends of semiconductor polymer and small molecular crystals for improved-performance thin-film transistors," Applied Physics Letters, vol. 87, p. 222109, 2005.
    [60] Y. Zhang, A. Kolmakov, Y. Lilach, and M. Moskovits, "Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire " JOURNAL OF PHYSICAL CHEMISTRY B, vol. 109, pp. 1923-1929, 2005.
    [61] Q. Wan, J. Huang, Z. Xie, T. Wang, E. N. Dattoli, and W. Lu, "Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application " Applied Physics Letters, vol. 92, p. 102101, 2008.
    [62] L. Luo, B. D. Sosnowchik, and L. Lin, "Local vapor transport synthesis of zinc oxide nanowires for ultraviolet-enhanced gas sensing " Nanotechnology, vol. 21, p. 495502, 2010.
    [63] C.-W. Pao, C.-T. Wu, H.-M. Tsai, Y.-S. Liu, C.-L. Chang, W. F. Pong, J.-W. Chiou, C.-W. Chen, M.-S. Hu, M.-W. Chu, L.-C. Chen, C.-H. Chen, K.-H. Chen, S.-B. Wang, S.-J. Chang, M.-H. Tsai, H.-J. Lin, J.-F. Lee, and J.-H. Guo, "Photoconduction and the electronic structure of silica nanowires embedded with gold nanoparticles," Phys. Rev. B, vol. 84, p. 165412, 2011.

    Reference for chapter 2

    [1] L. Rayleigh, "On the Instability of Jets," Proc. Longon Math. Soc., vol. 10, pp. 4-13, 1878.
    [2] J. Rodel and M. Glaeser, "High-temperature healing of lithographically introduced cracks in sapphire," J. Am. Ceram. Soc., vol. 73, pp. 592-601, 1990.
    [3] F. F. Lange and D. R. Clarke, "Morphological changes of an intergranular thin film in a polycrystalline spinel," J. Am. Ceram. Soc., vol. 65, pp. 502-506, 1982.
    [4] D. J. Srolovitz and S. A. Safran, "Capillary instabilities in thin films," J. Appl. Phys., vol. 60, pp. 247-260, 1986.
    [5] X. Li and Q. Nie, "Surface Diffusion on Stressed Solid Surface," Commun. Comput. Phys., vol. 2, 2007.
    [6] W. W. Zhou, L. Sun, T. Yu, J. X. Zhang, H. Gong., and H. J. Fan, "The morphology of Au@MgO nanopeapods," Nanotechnology, vol. 20, p. 455603, 2009.
    [7] N. H. Fletcher, R. G. Elliman, and T. H. Kim, "Gold bead-strings in silica nanowires: a simple diffusion model," Nanotechnology, vol. 20, p. 085613, 2009.
    [8] M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, "Photosensitive gold-nanoparticle-embedded dielectric nanowires," Nature Materials, vol. 5, pp. 102-106, 2006.
    [9] Y. Li, Y. Bando, and D. Golberg, "Indium-assisted growth of aligned ultra-long silica nanotubes," Adv. Mater., vol. 16, pp. 37-40, 2004.
    [10] C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, "Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires," Nano Letters, vol. 8, pp. 3081-3085, 2008.
    [11] P. H. Chen, C. H. Hsieh, S. Y. Chen, C. H. Wu, Y. J. Wu, L. J. Chou, and L. J. Chen, "Direct Observation of Au/Ga2O3 Peapodded Nanowires and Their Plasmonic Behaviors," Nano Letters, vol. 10, pp. 3267-3271, 2010.
    [12] J. M. Brockman, B. P. Nelson, and R. M. Corn, "Surface plasmon resonance imaging measurements of ultrathin organic films," Annu. Rev. Phys. Chem., vol. 51, pp. 41-63, 2000.
    [13] H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg, and W. Knoll, "Probing the evanescent field of propagating plasmon surface polaritons by fluorescence and Raman spectroscopies," J. Chem. Phys., vol. 98, pp. 10093-10095, 1993.
    [14] K. A.Willets and R. P. V. Duyne, "Localized Surface Plasmon Resonance Spectroscopy and Sensing," Annu. Rev. Phys. Chem., vol. 58, pp. 267-297, 2007.
    [15] S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nano-dots and nano-rods," J. Phys. Chem. B, vol. 103, pp. 8410-26, 1999.
    [16] S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photonics, vol. 1, pp. 641-648, 2007.
    [17] H. Bassler, "Charge Transport in Disordered Organic Photoconductors," physica Status Solidi B, vol. 175, p. 15, 1993.
    [18] V. Ng, H. Ahmed, and T. Shimada, "Nonlinear electron transport characteristics in ultrathin wires of recrystallized hydrogenated amorphous silicon," Applied Physics Letters, vol. 73, p. 972, 1998.
    [19] M. Hering, M. Scheffler, M. Dressel, and H. v. Löhneysen, "Signature of electronic correlations in the optical conductivity of the doped semiconductor Si:P," Phys. Rev. B, vol. 75, p. 205203 2007.
    [20] Y. Long, L. Zhang, Z. Chen, K. Huang, Y. Yang, H. Xiao, M. Wan, A. Jin, and C. Gu, "Electronic transport in single polyaniline and polypyrrole microtubes," Physical Review B, vol. 71, p. 165412 2005.
    [21] J. L. Dunford, Y. Suganuma, and A.-A. Dhirani, "Quasilocalized hopping in molecularly linked Au nanoparticle arrays near the metal-insulator transition," Physical Review B, vol. 72, p. 075441 2005.
    [22] V. F. Gantmakher, "Electrons and Disorder in Solids," Electrons and Disorder in Solids (Oxford University Press), 2005.
    [23] N. F. Mott and E. A. David, "Electronic Processes in Noncrystalline Materials," (Oxford University Press, Oxford), 1979.
    [24] P. Achatz, O. A. Williams, P. Bruno, D. M. Gruen, J. A. Garrido, and M. Stutzmann, "Effect of nitrogen on the electronic properties of ultrananocrystalline diamond thin films grown on quartz and diamond substrates," PHYSICAL REVIEW B, vol. 74, p. 155429, 2006.
    [25] S. M. Sze and K. K. NG, "Physics of Semiconductor Devices (3rd Ed.)," New York: Wiley, 2007.
    [26] P. Bhattacharya, "Semiconductor Optoelectronic Devices," Prentice-Hall Inc. New Jersey,, vol. Chapter 8, pp. 346-351, 1997.
    [27] C.-W. Pao, C.-T. Wu, H.-M. Tsai, Y.-S. Liu, C.-L. Chang, W. F. Pong, J.-W. Chiou, C.-W. Chen, M.-S. Hu, M.-W. Chu, L.-C. Chen, C.-H. Chen, K.-H. Chen, S.-B. Wang, S.-J. Chang, M.-H. Tsai, H.-J. Lin, J.-F. Lee, and J.-H. Guo, "Photoconduction and the electronic structure of silica nanowires embedded with gold nanoparticles," Phys. Rev. B, vol. 84, p. 165412, 2011.
    [28] C.-T. Wu, M.-W. Chu, S.-B. Wang, M.-S. Hu, K.-H. Chen, L.-C. Chen, C.-W. Chen, and C.-H. Chen, "Anisotropic surface plasmon excitation in Au/silica nanowire," Applied Physics Letters, vol. 96, p. 263106, 2010.

    Reference for chapter 3

    [1] M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, "Photosensitive gold-nanoparticle-embedded dielectric nanowires," Nature Materials, vol. 5, pp. 102-106, 2006.

    Reference for chapter 4

    [1] S. E. Mohney, Y. Wang, M. A. Cabassi, K. K. Lew, S. Dey, J. M. Redwing, and T. S. Mayer, "Measuring the specific contact resistance of contacts to semiconductor nanowires," Solid-State Electronics, vol. 49, pp. 227-232, 2005.
    [2] V. F. Gantmakher, "Electrons and Disorder in Solids," Electrons and Disorder in Solids (Oxford University Press), 2005.
    [3] J. J. Ke, K. T. Tsai, Y. A. Dai, and J. H. He, "Contact transport of focused ion beam-deposited Pt to Si nanowires: From measurement to understanding," Applied Physics Letters, vol. 100, p. 053503, 2012.
    [4] D. K. Paul and S. S. Mitra, "Evaluation of Mott's Parameters for Hopping Conduction in Amorphous Ge, Si, and Se-Si," Phys. Rev. Lett., vol. 31, pp. 1000-1003, 1973.
    [5] C. Godet, "Hopping model for charge transport in amorphous carbon," Philosophical Magazine B vol. 81, pp. 205-222, 2001.
    [6] P. Achatz, O. A. Williams, P. Bruno, D. M. Gruen, J. A. Garrido, and M. Stutzmann, "Effect of nitrogen on the electronic properties of ultrananocrystalline diamond thin films grown on quartz and diamond substrates," PHYSICAL REVIEW B, vol. 74, p. 155429, 2006.
    [7] C. Godet, "Electronic Localization and Bandtail Hopping Charge Transport," Physica Status Solidi B, vol. 231, pp. 499-511, 2002.
    [8] S. J. Bending and M. R. Beasley, "Transport processes via localized states in thin a-Si tunnel barriers," Phys. Rev. Lett., vol. 55, pp. 324-327, 1985.
    [9] C. Godet, "Variable range hopping revisited: the case of an exponential distribution of localized states," Journal of Non-Crystalline Solids, vol. 229, pp. 333-338, 2002.
    [10] C.-W. Pao, C.-T. Wu, H.-M. Tsai, Y.-S. Liu, C.-L. Chang, W. F. Pong, J.-W. Chiou, C.-W. Chen, M.-S. Hu, M.-W. Chu, L.-C. Chen, C.-H. Chen, K.-H. Chen, S.-B. Wang, S.-J. Chang, M.-H. Tsai, H.-J. Lin, J.-F. Lee, and J.-H. Guo, "Photoconduction and the electronic structure of silica nanowires embedded with gold nanoparticles," Phys. Rev. B, vol. 84, p. 165412, 2011.
    [11] M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, "Photosensitive gold-nanoparticle-embedded dielectric nanowires," Nature Materials, vol. 5, pp. 102-106, 2006.
    [12] V. Ng, H. Ahmed, and T. Shimada, "Nonlinear electron transport characteristics in ultrathin wires of recrystallized hydrogenated amorphous silicon," Applied Physics Letters, vol. 73, p. 972, 1998.
    [13] H. Kind, H. Q. Yan, B. Messer, M. Law, and P. Yang, "Nanowire Ultraviolet Photodetectors and Optical Switches," Advanced Materials, vol. 14, pp. 158-160, 2002.
    [14] H.-H. Wang, C.-Y. Liu, S.-B. Wu, N.-W. Liu, C.-Y. Peng, T.-H. Chan, C.-F. Hsu, J.-K. Wang, and Y.-L. Wang, "Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10 nm Gaps," Advanced Materials, vol. 18, pp. 491-495, 2006.
    [15] P. Bhattacharya, "Semiconductor Optoelectronic Devices," Prentice-Hall Inc. New Jersey,, vol. Chapter 8, pp. 346-351, 1997.
    [16] J. K. Hyun and L. J. Lauhon, "Spatially Resolved Plasmonically Enhanced Photocurrent from Au Nanoparticles on a Si Nanowire," Nano Letters, vol. 11(7), pp. 2731-2734, 2011.
    [17] S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photonics, vol. 1, pp. 641-648, 2007.
    [18] C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, "Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires," Nano Letters, vol. 8, pp. 3081-3085, 2008.
    [19] P. H. Chen, C. H. Hsieh, S. Y. Chen, C. H. Wu, Y. J. Wu, L. J. Chou, and L. J. Chen, "Direct Observation of Au/Ga2O3 Peapodded Nanowires and Their Plasmonic Behaviors," Nano Letters, vol. 10, pp. 3267-3271, 2010.
    [20] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, "ZnO Nanowire UV Photodetectors with High Internal Gain," Nano Letters, vol. 7(4), pp. 1003-1009, Apr 2007.
    [21] R.-S. Chen, H.-Y. Chen, C.-Y. Lu, K.-H. Chen, C.-P. Chen, L.-C. Chen, and Y.-J. Yang, "Ultrahigh photocurrent gain in m-axial GaN nanowires," Applied Physics Letters vol. 91, p. 223106, 2007.
    [22] X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, "Tunable Ultrafast Optical Switching via Waveguided Gold Nanowires," Advanced Materials, vol. 20, pp. 4455-4459, 2008.
    [23] H. K. Lee, T. S. Suha, B. Y. Choea, K. S. Shinna, G. Chob, and V. Perez-Mendezc, "Transient photoconductive gain in a-Si:H devices and its applications in radiation detection," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 399, pp. 324-224, 1997.
    [24] R. S. Chen, C. A. Chen, H. Y. Tsai, W. C. Wang, and Y. S. Huang, "Photoconduction Properties in Single-Crystalline Titanium Dioxide Nanorods with Ultrahigh Normalized Gain," J. Phys. Chem. C, vol. 116(6), pp. 4267-4272, 2012.
    [25] S.-B. Wang, M.-S. Hu, S. J. Chang, C.-W. Chong, H.-C. Han, B.-R. Huang, L.-C. Chen, and K.-H. Chen, "Gold nanoparticle-modulated conductivity in gold peapodded silica nanowires " Nanoscale, vol. 4, pp. 3660-3664, 2012.
    [26] http://en.wikipedia.org/wiki/Atmosphere_of_Earth, From Wikipedia
    [27] J. Zhang, Z. H. Lu, and L. J. Wang, "Precision refractive index measurements of air, N-2, O-2, Ar, and CO2 with a frequency comb," Appl. Optics, vol. 47, pp. 3143-3151, JUN 2008.
    [28] Z. Fan and J. G. Lua, "Gate-refreshable nanowire chemical sensors," Applied Physics Letters, vol. 86, p. 123510, 2005.
    [29] N. S. Ramgir, Y. Yang, and M. Zacharias, "Nanowire-Based Sensors," Small vol. 6, pp. 1705-1722 2010.
    [30] K. Winer, "Band Bending and Oxygen-Induced Defects in A-Si-H " J. Vac. Sci. Technol. B vol. 7, pp. 1226-1231, 1989.
    [31] S.-W. Fan, A. K. Srivastava, and V. P. Dravidc, "UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO," Appl. Phys. Lett., vol. 95, p. 142106, 2009.

    Reference for chapter 6

    [1] J. H. Kim, J. Y. Jin, J. H. Jung, I. Lee, and T. W. Kim, "Formation and electrical properties of Ni1−xFex nanocrystals embedded in a polyimide layers for applications as nonvolatile flash memories," Appl. Phys. Lett, vol. 86, p. 032904, 2005.
    [2] M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, "Photosensitive gold-nanoparticle-embedded dielectric nanowires," Nature Materials, vol. 5, pp. 102-106, 2006.
    [3] C.-W. Pao, C.-T. Wu, H.-M. Tsai, Y.-S. Liu, C.-L. Chang, W. F. Pong, J.-W. Chiou, C.-W. Chen, M.-S. Hu, M.-W. Chu, L.-C. Chen, C.-H. Chen, K.-H. Chen, S.-B. Wang, S.-J. Chang, M.-H. Tsai, H.-J. Lin, J.-F. Lee, and J.-H. Guo, "Photoconduction and the electronic structure of silica nanowires embedded with gold nanoparticles," Phys. Rev. B, vol. 84, p. 165412, 2011.
    [4] C.-Y. Chen, Y.-K. Lin, C.-W. Hsu, Chiu-Yen Wang, Y.-L. Chueh, L.-J. Chen, S.-C. Lo, and L.-J. Chou, "Coaxial Metal-Silicide Ni2Si/C54-TiSi2 Nanowires," Nano Lett., vol. 12, pp. 2254-2259, 2012.

    下載圖示 校內:2018-07-09公開
    校外:2018-07-09公開
    QR CODE