簡易檢索 / 詳目顯示

研究生: 陳怡嘉
Chen, Yi-Jia
論文名稱: 自由活塞式史特靈引擎與線性振盪發電機之整合模型分析
Integrated Model Analysis of a Free-Piston Stirling Engine Incorporated with a Linear Alternator
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程國際碩博士學位學程
International Master/Doctoral Degree Program on Energy Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 91
中文關鍵詞: 整合模型電磁模型熱力模型動力模型線性振盪發電機自由活塞式史特靈引擎
外文關鍵詞: Integrated model, Electromagnetic model, Thermodynamic model, Dynamic model, linear alternator, Free-piston Stirling engine
相關次數: 點閱:217下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將自由活塞式史特靈引擎結合線性振盪發電機建立整合系統。由於自由活塞式史特靈引擎具有較簡單機構,其運作參數被限制在一定範圍內。隨著線性交流發電機的結合,整合系統的動態特性隨之改變。本研究進行數值模擬以預測系統特性,並通過數值模擬獲得可行的操作條件。由於影響整合系統運行的參數較為複雜,因此觀察其數值模擬結果可為線性交流發電機開發的提供進一步參考數據。
    在本研究中,線性振盪發電機被視為自由活塞式史特靈引擎動態模型的外部負載。採用商業電磁模擬軟體JMAG,建立線性振盪發電機的電磁模型。自由活塞式史特靈引擎之動力模型、熱力模型與系統整合模型是藉由Visual Basic建構。系統之動態行為以及線性振盪發電機的電磁輸出透過數值模擬獲得。透過分析自由活塞式史特靈引擎的幾何參數與操作條件可取得整合系統之運作狀態。其分析數據做為實驗驗證之依據。

    An integrated model considering a linear alternator incorporated with free-piston Stirling engine (FPSE) is developed in this study. With the simple mechanism of the free piston Stirling engine, the operating parameters are restricted in certain range. In order to predict the performance of the integrated system, numerical simulation is performed in this study. With the integration of linear alternator, the operating characteristics of system has changed which can be testified through numerical simulation to obtain workable input condition. Since the parameters that affecting the operation of integrated system are complicated, observing the output simulation results provide reference data for further development of linear alternator.
    In this study, the FPSE is integrated with a linear alternator which is considered as an external load for the dynamic model. Using commercial electromagnetic simulation software JMAG, the electromagnetic model of the linear alternator is constructed. The in-house thermodynamic, dynamic and the integrated program are built based on Visual Basic computer language. The dynamic behavior of integrated system along with the electrical output of the linear alternator are obtained. The geometric parameters and initial operating conditions of FPSE are analyzed and an compatible condition is found for the integrated system. The analysis data can be the reference for further experimental application.

    Chapter I INTRODUCTION 1 1.1 Motivation 1 1.2 Stirling Engine 2 1.2.1 Operating principle of the ideal Stirling cycle 2 1.2.2 Free-piston Stirling engine (FPSE) 2 1.3 Linear alternator 3 1.3.1 Working principle 3 1.3.2 Electromagnetic simulation and analysis 5 1.4 FPSE incorporated with linear alternator 6 1.5 Research motivations and objectives 8 1.6 Thesis architecture 9 Chapter II THEORATICAL MODEL 11 2.1 Assumptions 11 2.2 Dynamic model 12 2.2.1 The geometric parameters of FPSE 13 2.2.2 Equation of motion 13 2.2.3 Collision model 15 2.3 Thermodynamic model 16 2.3.1 Initial conditions 16 2.3.2 Volume change in each chamber 18 2.3.3 Pressure change in each chamber 19 2.4 Electromagnetic model 19 2.4.1 Governing equation 20 2.4.2 Force exerted on mover 23 2.4.3 Electromotive force (EMF) 24 2.4.4 Energy loss of linear alternator 25 2.5 Calculation process 26 Chapter III NUMERICAL MODULES 28 3.1 Numerical simulation of linear alternator 28 3.1.1 Geometric model 28 3.1.2 Mesh setting 29 3.1.3 Circuit design 29 3.1.4 Motion condition 30 3.1.5 Electromagnetic force 30 Chapter IV RESULTS AND DISCUSSION 31 4.1 Parametric study of FPSE 31 4.1.1 Effects of charged pressure on FPSE 31 4.1.2 Effects of applied heating temperature on FPSE 32 4.2 Parametric study of linear alternator 32 4.2.1 Effects of moving amplitude of mover 33 4.2.2 Effects of vibration frequency of mover 33 4.2.3 Effects of magnet material of mover 34 4.2.4 Effects of coil winding turns 35 4.3 Linear alternator integrated with FPSE under different operating condition 35 Chapter V CONCLUSIONS 37 Reference 39

    1. Global Energy & CO2 Status Report 2019, IEA (https://www.iea.org/reports/global-energy-co2-status-report-2019/emissions)
    2. 林昱廷,自由活塞式史特靈引擎之動態模擬與製作,國立成功大學航空太空工程學系碩士學位論文,民國100年。
    3. 郭俊佑,自由活塞式史特靈引擎之設計與分析,國立成功大學航空太空工程學系碩士學位論文,民國102年。
    4. 巫婉瑜,線性發電機之磁路設計與分析,國立成功大學工程科學系碩士在職專班學位論文,民國100年。
    5. Black, B., Lopez, M. and Morcos, A., Basics of voice coil actuators, PCIM-VENTURA, Vol. 19, pp. 44–44, 1993.
    6. 國家實驗研究院,科技政策智庫:波浪能發電之發展潛能,民國99年。
    7. Jang, S.M., Choi, J.Y., Cho, H.W. and Lee, S.H., Thrust analysis and measurements of tubular linear actuator with cylindrical Holbach array: Transactions on magnetics, IEEE Transactions on Magnetics, Vol.41(5), pp. 2028-2031, 2005.
    8. Taflove, A. and Hagness, S., Computational electrodynamics: The finite-difference time-domain method, Boston, Artech house, 2000.
    9. Harrington, R.F., Field computation by moment methods, Hoboken, New Jersey, Wiley-IEEE Press, 1993.
    10. Volakis, J.L., Chatterjee, A. and Kempel, L.C., Finite element method for electromagnetics: Antennas, microwave circuits, and scattering applications, Hoboken, NJ, Wiley-IEEE Press, 1998.
    11. Jabbar, M., Liu, Z. and Dong, J., Time-stepping finite-element analysis for the dynamic performance of a permanent magnet synchronous motor: Transactions on magnetics, IEEE Transactions on Magnetics, Vol.39(5), pp. 2621 – 2623, 2003
    12. Cawthorne, W.R., Famouri, P., Chen, J., Clark, N.N., McDaniel, T.I., Atkinson, R.J., Nandkumar, S., Atkinson, C.M. and Petreanu, S., Development of a linear alternator-engine for hybrid electric vehicle applications: Transactions on vehicular technology, IEEE Transactions on Vehicular Technology, Vol.48(6), pp. 1797-1802, 1999.
    13. Redlich, R. and Berchowitz, D., Linear dynamics of free-piston Stirling engines, Proceedings of the institution of mechanical engineers, Part A: Power and process engineering, Vol.199(3), pp. 203–213,1985.
    14. Lewandowski, E. and Johnson, P.K., Stirling System Modeling for Space Nuclear Power Systems, Space Nuclear Conference, Boston, MA, 2007
    15. Sari, A., Espanet, C., Lanzetta, F., Chamagne, D., Marquet, D., Nika, P., Design and performance prediction of miniaturized stirling power generators, International Telecommunications Energy Conference, Rome, Italy, 2008.
    16. Zhu, S., Yu, G., O, J., Xu, T., Wu, Z., Dai, W. and Luo, E., Modeling and experimental investigation of a free-piston Stirling enginebased micro-combined heat and power system, Applied Energy, Vol.226, pp.522-533, 2018.
    17. 謝坤植,線性交流發電機與自由活塞式史特靈引擎整合系統之動力分析,國立成功大學航空太空工程學系碩士學位論文,民國107年。
    18. Park, J., Ko, J., Kim, H., Hong, Y., Yeom, H., Park,S., In, S., The design and testing of a kW-class free-piston Stirling engine for micro-combined heat and power applications, Applied Thermal Engineering, Vol.164, 114504, 2020.
    19. Majidniya, M., Boileau, T., Remy, B., Zandi, M., Performance simulation by a nonlinear thermodynamic model for a Free Piston Stirling Engine with a linear generator, Applied Thermal Engineering, Vol.184, 116128, 2021.
    20. Fleisch, D., A student's guide to Maxwell's equations, Cambridge, UK, Cambridge University Press, 2008.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE