簡易檢索 / 詳目顯示

研究生: 侯瑋明
Hou, Wei-Ming
論文名稱: 以直覺式模糊目標規畫求解多階層決策問題
Developing Intuitionistic Fuzzy Goal Programming Approaches to Solve Multi-level Decision-making Problems
指導教授: 陳梁軒
Chen, Liang-Hsuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 82
中文關鍵詞: 直覺式模糊集合理論直覺式模糊目標規劃多階層決策問題語意變數
外文關鍵詞: Multi-level programming, Intuitionistic fuzzy goal programming
相關次數: 點閱:177下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多階層決策問題(Multi-level decision making problems)存在於具有階層架構之決策群體,成員在決策過程中依循階級依次序進行決策,求解規劃問題並評估決策者對於目標達成結果之滿意度。然而,高階決策者在決策上往往會限制低階決策者,使得低階決策者較為難以施力,為提升組織整體目標達成程度,往往透過妥協讓步和重複調整的方式,決策者對於求解結果必會有正反兩面之看法。在處理此多階層中不確定性之問題,過去學者大多採用模糊目標規劃方法,以模糊歸屬度函數概念表達其對結果之滿意度進行求解,但僅考慮決策者對於該求解結果正向意見,忽略決策者對其之不滿意程度。此外,對於現行解不合要求時,高階決策者可依據自己想法調整下階決策,若於較多階層之團體決策中,將使求解過程耗費較多時間。
    本研究提出以直覺式目標規劃(Intuitionistic fuzzy goal programming)求解多階層問題,考慮決策者間之相對主導權,提出一較客觀之非歸屬度函數建立方式,以非歸屬程度來表達決策者對於求解結果之不滿意度,增加對於決策問題之詮釋。本研究之求解模式分為兩步驟,在前置作業中,分別建立目標式之歸屬度函數與非歸屬度函數,以及決策變數之歸屬度函數。接著在模式建立與求解中,提出權重模式與語意變數模式之直覺式模糊目標規劃模型進行求解,決策者可依據其要求選擇合適模型。模式建立後,套用數值範例實際演練,再與過去學者研究比較,結果顯示本研究所提出方法除了能有效提升整體目標滿意度,亦能詮釋更多決策問題中的不確定性。此外,以範例分析試驗群組後,當首階(最高階)與末階(最低階)決策者的決策主導分數分別越高與越低,整體評分值與整體猶豫程度兩指標表現更加優異。而最高領導階層地位明顯的組織相較於各階層差異較小之組織,此兩衡量指標表現也較佳,權重偏差值亦較小。最後,針對本研究給予結論與建議,並提出未來之研究方向。

    Multi-level decision-making problems appear in decision group with hierarchical structures. Generally, we evaluate the degree of satisfaction of decision-makers (DMs) based on goal achievement related to solving decision-making problems. However, when members make decisions, high-level DMs will restrict those who are lower. In order to maximize overall satisfaction, we must obtain the compromised solution for every level so different level DMs must have both positive and negative thoughts. To present this practical situation, the proposed model adopts the concept of intuitionistic fuzzy sets and proposes the objective definition for non-membership function, based on the tendency of the majority of membership degree and non-membership degree, to illustrate the degree of dissatisfaction of DMs with goal achievement according to the decision-makers’ relative domination related to building their non-membership functions for each objective. Moreover, linguistic variables are adopted to present the subjective requirements of DMs that restrict the relationship between the satisfaction and dissatisfaction of each, and the relationship between adjacent levels of satisfaction or dissatisfaction. After integrating all variables and constraints, we were able to apply the proposed models (intuitionistic fuzzy goal programming) and to compare the results, degree of satisfaction, degree of hesitation, and score function, with other methods containing fuzzy goal programming and interactive intuitionistic fuzzy method. The results obtained using the proposed method were better than those of the other two studies, which presents except for considering two sides of DMs’ thoughts and DMs are generally more satisfied with the results.

    摘要 I Abstract II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究假設 2 1.4 研究流程 3 1.5 論文架構 4 第二章 文獻探討 5 2.1 模糊集合 5 2.2直覺式模糊目標規劃 13 2.3 多階層規劃決策 18 2.4 小結 31 第三章 求解多階層之直覺式模糊目標模型建構 32 3.1 研究構想 32 3.2 模式建構 35 3.3 小結 53 第四章 數值分析 54 4.1 數值例演算 54 4.2 求解結果比較與分析 65 4.3 敏感度分析 69 4.4 小結 75 第五章 結論與建議 76 5.1 研究成果 76 5.2 未來研究方向 77 參考文獻 79

    林芳儀 (2017). "以模糊目標規劃法求解多階層決策問題." 成功大學工業與資訊管理學系學位論文,1-69.

    蔡昭廷 (2015). "以模糊目標規劃求解多階層單目標之決策問題." 成功大學工業與資訊管理學系學位論文,1-68.

    Angelov, P. (1997). "Optimization in an intuitionistic fuzzy envionment." Fuzzy Sets and Systems ,86(3), 299-306.

    Atanassov, K. T. (1986), “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, 20 (1), 87-96.

    Atanassov, K. T. (1999), Intuitionistic Fuzzy Sets:Theory and Applications, Physica-Verlag, Heidelberg.

    Arora, S. and R. Gupta (2009). "Interactive fuzzy goal programming approach for bilevel programming problem." European Journal of Operational Research, 194(2), 368-376.
    Baky, I. A. (2010). "Solving multi-level multi-objective linear programming problems through fuzzy goal programming approach." Applied Mathematical Modelling, 34(9),2377-2387.

    Ben-Ayed, O., Boyce, D. E., and Blair, C. E. (1988). "A general bilevel linear programming formulation of the network design problem." Transportation Research Part B: Methodological, 22(4), 311-318.

    Charnes, A. and Cooper, W. W. , (1961). Management models and industrial applications of linear programming. Wiley, New York.

    Chen, L.-H. and Chen, H.-H. (2013). "Considering decision decentralizations to solve bi-level multi-objective decision-making problems: A fuzzy approach." Applied Mathematical Modelling, 37(10-11), 6884-6898.

    Chen, L.-H. and Chen, H.-H. (2015a). "A fuzzy approach with required minimum decision tolerances for multi-level multi-objective decision-making problems." Journal of Intelligent & Fuzzy Systems, 28(1), 217-224.

    Chen, L.-H. and Chen, H.-H. (2015b). "A two-phase fuzzy approach for solving multi-level decision-making problems." Knowledge-Based Systems, 76, 189-199.

    Chen, L.-H. and Tu, C.-C. (2014). "Dual bipolar measures of Atanassov’s intuitionistic fuzzy sets." IEEE Transactions on fuzzy systems , 22(4).

    Dubois, D. and H. Prade (1978). "Operations on fuzzy numbers." International Journal of systems science, 9(6), 613-626.

    Hannan, E. (1981). "On fuzzy goal programming." Decision Sciences ,12, 522-531.

    Hassan, T.A. (2014). " Interactive Fuzzy Goal Programming approach for Tri-Level Linear Programming Problems." International Journal of Engineering Research and Applications, 4(11), 136-146.

    Lai, Y.-J. (1996). "Hierarchical optimization: a satisfactory solution." Fuzzy Sets and Systems, 77(3), 321-335.

    Malhotra, R and Bharati, S.K. (2016). "Intuitionistic fuzzy two stage multi-objective transportation problems." Advances in Theoretical and Applied Mathematics ,11(3), 305-316.

    Mishra, M., Verma, A.B., and Dey, I. (2017). “Fuzzy Goal Programming Procedure to Bi-Level Multiobjective Programming Problems.” International Journal of Research in Engineering, Technology and Science . 7

    Mohamed, R. H. (1997). "The relationship between goal programming and fuzzy programming." Fuzzy Sets and Systems ,89(2), 215-222.

    Narasimhan, R. (1980). "Goal programming in a fuzzy environment." Decision sciences ,11(2), 325-336.

    Pramanik, S. and Roy, T. K. (2005). "An intuitionistic fuzzy goal programming approach to vector optimization problem." Notes on Intutionistic Fuzzy Sets ,11(5), 1-14.

    Pramanik, S. and Roy, T. K. (2007). "Fuzzy goal programming approach to multilevel programming problems." European Journal of Operational Research ,176(2), 1151-1166.

    Ren, A., Wang, Y., and Xue, X. (2004). " Interactive programming approach for solving the fully fuzzy bilevel linear programming problem." Knowledge-Based Systems, 99, 103-111.

    Romero, C. (2004). "A general structure of achievement function for a goal programming model." European Journal of Operational Research ,153(3), 675-686.

    Sakawa, M., Nishizaki, I., and Uemura, Y. (1998). "Interactive fuzzy programming for multilevel linear programming problems." Computers & Mathematics with Applications ,36(2), 71-86.

    Sakawa, M., Nishizaki, I., and Uemura, Y. (2000). "Interactive fuzzy programming for two-level linear fractional programming problems with fuzzy parameters." Fuzzy Sets and Systems ,115(1), 93-103.

    Shih, H.-S., Lai, Y.-J., and Lee, E.S. (1996). "Fuzzy approach for multi-level programming problems." Computers & Operations Research ,23(1), 73-91.

    Sinha, S. (2003). "Fuzzy programming approach to multi-level programming problems." Fuzzy Sets and Systems ,136(2), 189-202.

    Tiwari, R.N., Dharmar, S., and Rao, J.R. (1987). "Fuzzy goal programming – an additive model." Fuzzy Sets and Systems ,24, 27-34.

    Zadeh, L. A. (1965). "Fuzzy sets." Information and control ,8(3), 338-353.

    Zadeh, L. A. (1975). "The concept of a linguistic variable and its application to approximate reasoning—I." Information sciences, 8(3), 199-249.

    Zhang, L. (2014). "A Fuzzy Algorithm for Solving a Class of Bi-Level Linear Programming Problem." Applied Mathematics & Information Sciences ,8(4), 1823-1828.

    Zhao, X ., Zheng, Y., and Wan, Z. (2017). "Interactive intuitionistic fuzzy methods for multilevel programming problems." Expert System with Applications, 72, 258-268.

    Zimmermann, H.-J. (1978). "Fuzzy programming and linear programming with several objective functions." Fuzzy Sets and Systems ,1(1), 45-55.

    無法下載圖示 校內:2020-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE