簡易檢索 / 詳目顯示

研究生: 黃偉豪
Huang, Wei-Hao
論文名稱: 雙邊不對稱球體之誘發性與自發性自組裝行為研究
Field-induced and Spontaneous Self-assembly of Janus Particles
指導教授: 郭昌恕
Kuo, Chang-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 100
中文關鍵詞: 雙邊不對稱球體誘發性自組裝自發性自組裝粒徑分布
外文關鍵詞: Janus Particles, Field-Induced Self-Assembly, Spontaneous Self-Assembly, Particle Size Distribution
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,分別探討雙邊不對稱球體之誘發性與自發性自組裝行為,利用外在磁場誘發磁性不對稱球體進行誘發性自組裝,及帶有電荷之不對稱球體與其相異電荷之球體產生自發性自組裝行為。不對稱球體由熱陷入及表面改質製備而成,使平均粒徑為500nm的二氧化矽球體半球表面改質上氨基-矽烷或分別將兩半球表面改質接上四氧化三鐵磁性奈米粒子及螢光染料。
    帶有正電荷氨基之不對稱球體與平均粒徑100nm之負電荷硫酸根聚苯乙烯進行靜電吸引自發性自組裝,藉由光散射粒徑分析儀觀測粒徑分布及其自組裝行為,改變兩球體在溶液中的數量比例,呈現出異向性材料其獨特自組裝行為,可形成半球吸附的釋迦狀結構、四面體或更大團聚等,兩球體之動態自組裝過程中亦同時證明其中有介穩態形成。在誘發性自組裝部分,由原子力顯微鏡和穿透式電子顯微鏡證實在一定外在磁場大小及溶液濃度下,磁性不對稱球體會被誘發自組裝為葡萄狀排列,因此在此篇論文中,會探討其不對稱球體自組裝行為在操控機制下之自組裝行為。

    Field-induced and spontaneous self-assemblies of asymmetric Janus particles were investigated in this research work. An external magnetic field was utilized to manipulate Janus particles hemispherically functionalized with magnets. Janus particles with ionic hemispheric surfaces were assembled with fully-charged colloids. Material preparations involved the sequentially-arranged particle-embedding and surface-modification processes. Silica particles with the average diameter of 500 nm were hemispherically functionalized with the amino-silane or were bi-functionalized with Fe3O4 nanoparticles and fluorescent dye moieties individually on the two hemispheric surfaces. Fully-charged substances were the polystyrene (PS) sulfate particles with 100 nm in diameter. Spontaneous self-assembly via the electrostatic interactions from amino-functionalized Janus particles and sulfated PS particles was investigated and monitored by the light-scattering particle size analyzer. Variations in the amino-Janus and PS particle ratios in the aqueous media revealed the unique assembly behaviors of these asymmetric materials. The different assembled clusters were identified as the “Buddha-head-like” hemisphere assembly, dimer, trimer, tetrahedron tetramer, or larger clusters. Dynamic self-assembly behaviors of amino-Janus and PS particles also evidenced the metastable cluster formation. Field-induced self-assembly, on the other hand, demonstrated the grape-like alignment of the magnetic-Janus particles as functions of the magnetic field and the particle concentration as shown in the TEM and AFM. Self-assemblies of these asymmetric submicron particles under the controlled mechanisms were demonstrated and examined in this research work.

    誌謝 I 中文摘要 II Abstract III Table of contents V List of Illustrations VII Chapter 1. Introduction 1 1.1 Janus particles and asymmetric micro- and nano- materials 1 1.1.1 Janus-like Materials 2 1.1.2 Fabrications of Janus Particles 6 1.1.3 One-dimensional Electrospun Polymer Fibers as Particle Embedding Substrates 17 1.1.4 Applications 19 1.2 Self-assembly 24 1.2.1 Introduction to self-assembly 24 1.2.2 Models of self-assembly 28 1.2.2.1 Particles vs. 2-D surface 30 1.2.2.2 Particles vs. particles 31 1.2.2.3 Self-assembly simulations 33 1.2.3 Field-induced Self-assembly 35 1.2.4 Applications of self-assembly 37 Chapter 2. Research Motivations 41 Chapter 3. Experimental 43 3.1 Chemical 43 3.2 Instruments Used in the Material Fabrication 45 3.3 Experiment process-Amine-modified Janus particles 47 3.4 Analytical Instruments 51 3.4.1 Particle Size Distribution 51 3.4.2 Zeta Potential 51 3.4.3 Dark Field Optical Microscopy 51 Chapter 4. Results and Discussion 52 4.1 Characterizations of Amino-Janus and Fe3O4/Dye Janus Particles 52 4.2 Self-Assembly of Particles 65 4.3 Magnetic field-induced Self-assembly 83 Chapter 5. Conclusion 93 Reference 94

    1. Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E. B.; Duguet, E., Design and synthesis of Janus micro- and nanoparticles. Journal of Materials Chemistry 2005, 15 (35-36), 3745-3760.
    2. Degennes, P. G., SOFT MATTER (NOBEL LECTURE). Angew. Chem.-Int. Edit. Engl. 1992, 31 (7), 842-845.
    3. Cho, I.; Lee, K. W., MORPHOLOGY OF LATEX-PARTICLES FORMED BY POLY(METHYL METHACRYLATE)-SEEDED EMULSION POLYMERIZATION OF STYRENE. J. Appl. Polym. Sci. 1985, 30 (5), 1903-1926.
    4. Casagrande, C.; Fabre, P.; Raphael, E.; Veyssie, M., JANUS BEADS - REALIZATION AND BEHAVIOR AT WATER OIL INTERFACES. Europhys. Lett. 1989, 9 (3), 251-255.
    5. Yoon, J.; Lee, K. J.; Lahann, J., Multifunctional polymer particles with distinct compartments. Journal of Materials Chemistry 2011, 21 (24), 8502-8510.
    6. Liu, Y. F.; Abetz, V.; Muller, A. H. E., Janus cylinders. Macromolecules 2003, 36 (21), 7894-7898.
    7. (a) Walther, A.; Drechsler, M.; Rosenfeldt, S.; Harnau, L.; Ballauff, M.; Abetz, V.; Muller, A. H. E., Self-Assembly of Janus Cylinders into Hierarchical Superstructures. J. Am. Chem. Soc. 2009, 131 (13), 4720-4728; (b) Ruhland, T. M.; Groschel, A. H.; Wather, A.; Muller, A. H. E., Janus Cylinders at Liquid-Liquid Interfaces. Langmuir 2011, 27 (16), 9807-9814.
    8. Walther, A.; Andre, X.; Drechsler, M.; Abetz, V.; Muller, A. H. E., Janus discs. J. Am. Chem. Soc. 2007, 129 (19), 6187-6198.
    9. Walther, A.; Drechsler, M.; Muller, A. H. E., Structures of amphiphilic Janus discs in aqueous media. Soft Matter 2009, 5 (2), 385-390.
    10. Chen, Q. H.; Li, Q. Q.; Lin, J. H., Synthesis of Janus composite particles by the template of dumbbell-like silica/polystyrene. Mater. Chem. Phys. 2011, 128 (3), 377-382.
    11. Wang, Y. L.; Xu, H.; Qiang, W. L.; Gu, H. C.; Shi, D. L., Asymmetric Composite Nanoparticles with Anisotropic Surface Functionalities. J. Nanomater. 2009.
    12. Koo, H. Y.; Yi, D. K.; Yoo, S. J.; Kim, D. Y., A snowman-like array of colloidal dimers for antireflecting surfaces. Adv. Mater. 2004, 16 (3), 274-+.
    13. (a) McConnell, M. D.; Kraeutler, M. J.; Yang, S.; Composto, R. J., Patchy and Multiregion Janus Particles with Tunable Optical Properties. Nano Lett. 2010, 10 (2), 603-609; (b) Lin, C. C.; Liao, C. W.; Chao, Y. C.; Kuo, C. S., Fabrication and Characterization of Asymmetric Janus and Ternary Particles. ACS Appl. Mater. Interfaces 2010, 2 (11), 3185-3191; (c) Ye, S. R.; Carroll, R. L., Design and Fabrication of Bimetallic Colloidal "Janus" Particles. ACS Appl. Mater. Interfaces 2010, 2 (3), 616-620.
    14. Smoukov, S. K.; Gangwal, S.; Marquez, M.; Velev, O. D., Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Matter 2009, 5 (6), 1285-1292.
    15. Berger, S.; Synytska, A.; Ionov, L.; Eichhorn, K. J.; Stamm, M., Stimuli-Responsive Bicomponent Polymer Janus Particles by "Grafting from"/"Grafting to" Approaches. Macromolecules 2008, 41 (24), 9669-9676.
    16. Wang, Y.; Hernandez, R. M.; Bartlett, D. J.; Bingham, J. M.; Kline, T. R.; Sen, A.; Mallouk, T. E., Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 2006, 22 (25), 10451-10456.
    17. Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y., Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system. Adv. Mater. 2006, 18 (9), 1152-+.
    18. (a) Braunecker, W. A.; Matyjaszewski, K., Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32 (1), 93-146; (b) Hawker, C. J., 'Living' free radical polymerization: A unique technique for the preparation of controlled macromolecular architectures. Accounts Chem. Res. 1997, 30 (9), 373-382.
    19. Xu, H.; Erhardt, R.; Abetz, V.; Muller, A. H. E.; Goedel, W. A., Janus micelles at the air/water interface. Langmuir 2001, 17 (22), 6787-6793.
    20. Walther, A.; Muller, A. H. E., Janus particles. Soft Matter 2008, 4 (4), 663-668.
    21. Chen, T.; Chen, G.; Xing, S. X.; Wu, T.; Chen, H. Y., Scalable Routes to Janus Au-SiO(2) and Ternary Ag-Au-SiO(2) Nanoparticles. Chem. Mat. 2010, 22 (13), 3826-3828.
    22. (a) Nisisako, T.; Torii, T., Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles. Adv. Mater. 2007, 19 (11), 1489-+; (b) Nie, Z. H.; Li, W.; Seo, M.; Xu, S. Q.; Kumacheva, E., Janus and ternary particles generated by microfluidic synthesis: Design, synthesis, and self-assembly. J. Am. Chem. Soc. 2006, 128 (29), 9408-9412; (c) Shepherd, R. F.; Conrad, J. C.; Rhodes, S. K.; Link, D. R.; Marquez, M.; Weitz, D. A.; Lewis, J. A., Microfluidic assembly of homogeneous and janus colloid-filled hydrogel granules. Langmuir 2006, 22 (21), 8618-8622.
    23. (a) Roh, K. H.; Martin, D. C.; Lahann, J., Biphasic Janus particles with nanoscale anisotropy. Nature Materials 2005, 4 (10), 759-763; (b) Roh, K. H.; Yoshida, M.; Lahann, J., Water-stable biphasic nanocolloids with potential use as anisotropic imaging probes. Langmuir 2007, 23 (10), 5683-5688.
    24. Hong, L.; Jiang, S.; Granick, S., Simple method to produce Janus colloidal particles in large quantity. Langmuir 2006, 22 (23), 9495-9499.
    25. (a) Li, Z. F.; Lee, D. Y.; Rubner, M. F.; Cohen, R. E., Layer-by-layer assembled janus microcapsules. Macromolecules 2005, 38 (19), 7876-7879; (b) Correa-Duarte, M. A.; Salgueirino-Maceira, V.; Rodriguez-Gonzalez, B.; Liz-Marzan, L. M.; Kosiorek, A.; Kandulski, W.; Giersig, M., Asymmetric functional colloids through selective hemisphere modification. Adv. Mater. 2005, 17 (16), 2014-+.
    26. (a) Cayre, O. J.; Paunov, V. N., Contact angles of colloid silica and gold particles at air-water and oil-water interfaces determined with the gel trapping technique. Langmuir 2004, 20 (22), 9594-9599; (b) Paunov, V. N.; Cayre, O. J., Supraparticles and "Janus" particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique. Adv. Mater. 2004, 16, 788.
    27. Cui, J. Q.; Kretzschmar, I., Surface-anisotropic polystyrene spheres by electroless deposition. Langmuir 2006, 22 (20), 8281-8284.
    28. He, Y. J.; Li, K. S., Novel Janus Cu-2(OH)(2)CO3/CUS microspheres prepared via a Pickering emulsion route. J. Colloid Interface Sci. 2007, 306 (2), 296-299.
    29. Binsk, B. P.; Fletcher, P. D. I., Particles adsorbed at the oil-water interface: A theoretical comparison between spheres of uniform wettability and "Janus" particles. Langmuir 2001, 17 (16), 4708-4710.
    30. Zhu, M. W.; Li, Y. M.; Meng, T.; Zhan, P.; Sun, J.; Wu, J.; Wang, Z. L.; Zhu, S. N.; Ming, N. B., Controlled strain on a double-templated textured polymer film: a new approach to patterned surfaces with Bravais lattices and chains. Langmuir 2006, 22 (17), 7248-7253.
    31. Walther, A.; Matussek, K.; Muller, A. H. E., Engineering nanostructured polymer blends with controlled nanoparticle location using Janus particles. ACS Nano 2008, 2 (6), 1167-1178.
    32. Howse, J. R.; Jones, R. A. L.; Ryan, A. J.; Gough, T.; Vafabakhsh, R.; Golestanian, R., Self-motile colloidal particles: From directed propulsion to random walk. Phys. Rev. Lett. 2007, 99 (4).
    33. Alexeev, A.; Uspal, W. E.; Balazs, A. C., Harnessing Janus nanoparticles to create controllable pores in membranes. ACS Nano 2008, 2 (6), 1117-1122.
    34. Yoshida, M.; Lahann, J., Smart nanomaterials. ACS Nano 2008, 2 (6), 1101-1107.
    35. Glotzer, S. C.; Solomon, M. J., Anisotropy of building blocks and their assembly into complex structures. Nature Materials 2007, 6 (8), 557-562.
    36. Behrend, C. J.; Anker, J. N.; McNaughton, B. H.; Kopelman, R., Microrheology with modulated optical nanoprobes (MOONs). J. Magn. Magn. Mater. 2005, 293 (1), 663-670.
    37. Anthony, S. M.; Kim, M.; Granick, S., Single-particle tracking of janus colloids in close proximity. Langmuir 2008, 24 (13), 6557-6561.
    38. (a) Jiang, S.; Granick, S., Janus balance of amphiphilic colloidal particles. J. Chem. Phys. 2007, 127 (16); (b) Jiang, S.; Granick, S., Controlling the geometry (Janus balance) of amphiphilic colloidal particles. Langmuir 2008, 24 (6), 2438-2445.
    39. Hong, L.; Cacciuto, A.; Luijten, E.; Granick, S., Clusters of amphiphilic colloidal spheres. Langmuir 2008, 24 (3), 621-625.
    40. Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K. S.; Granick, S., Janus Particle Synthesis and Assembly. Adv. Mater. 2010, 22 (10), 1060-1071.
    41. Cheung, D. L.; Bon, S. A. F., Stability of Janus nanoparticles at fluid interfaces. Soft Matter 2009, 5 (20), 3969-3976.
    42. Grzybowski, B. A.; Wilmer, C. E.; Kim, J.; Browne, K. P.; Bishop, K. J. M., Self-assembly: from crystals to cells. Soft Matter 2009, 5 (6), 1110-1128.
    43. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science 2002, 295 (5564), 2418-2421.
    44. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D., Molecular Biology of the Cell. Garland: New York, 1994.
    45. Schwiebert, K. E.; Chin, D. N.; MacDonald, J. C.; Whitesides, G. M., Engineering the solid state with 2-benzimidazolones. J. Am. Chem. Soc. 1996, 118 (17), 4018-4029.
    46. Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D., Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 2001, 293 (5532), 1119-1122.
    47. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B., Microdomain patterns from directional eutectic solidification and epitaxy. Nature 2000, 405 (6785), 433-437.
    48. Whitesides, G. M., SELF-ASSEMBLING MATERIALS. Sci.Am. 1995, 273 (3), 146-149.
    49. Cheng, Y. J.; Wolkenhauer, M.; Bumbu, G. G.; Gutmann, J. S., A Facile Route to Reassemble Titania Nanoparticles Into Ordered Chain-like Networks on Substrate. Macromol. Rapid Commun. 2012, 33 (3), 218-224.
    50. Meshot, E. R.; Patel, K. D.; Tawfick, S.; Juggernauth, K. A.; Bedewy, M.; Verploegen, E. A.; De Volder, M. F. L.; Hart, A. J., Photoconductive Hybrid Films via Directional Self-Assembly of C60 on Aligned Carbon Nanotubes. Adv. Funct. Mater. 2012, 22 (3), 577-584.
    51. (a) Olenyuk, B.; Whiteford, J. A.; Fechtenkotter, A.; Stang, P. J., Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature 1999, 398 (6730), 796-799; (b) Lehn, J.-M., NATO ASI Ser. Ser. E 1996, 320, 14.
    52. Olson, M. A.; Coskun, A.; Klajn, R.; Fang, L.; Dey, S. K.; Browne, K. P.; Grzybowski, B. A.; Stoddart, J. F., Assembly of Polygonal Nanoparticle Clusters Directed by Reversible Noncovalent Bonding Interactions. Nano Lett. 2009, 9 (9), 3185-3190.
    53. Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M., Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 2000, 404 (6779), 746-748.
    54. Sun, Z. H.; Ni, W. H.; Yang, Z.; Kou, X. S.; Li, L.; Wang, J. F., pH-controlled reversible assembly and disassembly of gold nanorods. Small 2008, 4 (9), 1287-1292.
    55. Si, S.; Raula, M.; Paira, T. K.; Mandal, T. K., Reversible self-assembly of carboxylated peptide-functionalized gold nanoparticles driven by metal-ion coordination. ChemPhysChem 2008, 9 (11), 1578-1584.
    56. Fialkowski, M.; Bishop, K. J. M.; Klajn, R.; Smoukov, S. K.; Campbell, C. J.; Grzybowski, B. A., Principles and implementations of dissipative (dynamic) self-assembly. J. Phys. Chem. B 2006, 110 (6), 2482-2496.
    57. Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J., A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382 (6592), 607-609.
    58. Glotzer, S. C., Some assembly required. Science 2004, 306 (5695), 419-420.
    59. Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y., Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 2000, 12 (10), 693-713.
    60. Whitesides, G., WHAT WILL CHEMISTRY DO IN THE NEXT 20 YEARS. Angew. Chem.-Int. Edit. Engl. 1990, 29 (11), 1209-1218.
    61. Whitesides, G. M., The once and future nanomachine - Biology outmatches futurists' most elaborate fantasies for molecular robots. Sci.Am. 2001, 285 (3), 78-83.
    62. Madou, M., fundamentals of Microfabrication. 1997.
    63. Boehringer, K. F., Fearing, R. S. & Goldberg, K. Y., The Handbook of Industrial Robotics. Wiley: New York, 1999; p 1045-1066.
    64. (a) Maury, P.; Escalante, M.; Reinhoudt, D. N.; Huskens, J., Directed assembly of nanoparticles onto polymer-imprinted or chemically patterned templates fabricated by nanoimprint lithography. Adv. Mater. 2005, 17 (22), 2718-+; (b) Jonas, U.; del Campo, A.; Kruger, C.; Glasser, G.; Boos, D., Colloidal assemblies on patterned silane layers. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (8), 5034-5039; (c) Chen, K. M.; Jiang, X. P.; Kimerling, L. C.; Hammond, P. T., Selective self-organization of colloids on patterned polyelectrolyte templates. Langmuir 2000, 16 (20), 7825-7834.
    65. Schlickum, U.; Decker, R.; Klappenberger, F.; Zoppellaro, G.; Klyatskaya, S.; Auwarter, W.; Neppl, S.; Kern, K.; Brune, H.; Ruben, M.; Barth, J. V., Chiral kagome lattice from simple ditopic molecular bricks. J. Am. Chem. Soc. 2008, 130 (35), 11778-11782.
    66. (a) Giacometti, A.; Lado, F.; Largo, J.; Pastore, G.; Sciortino, F., Effects of patch size and number within a simple model of patchy colloids. J. Chem. Phys. 2010, 132 (17); (b) Doppelbauer, G.; Bianchi, E.; Kahl, G., Self-assembly scenarios of patchy colloidal particles in two dimensions. J. Phys.-Condes. Matter 2010, 22 (10); (c) Liu, H. J.; Kumar, S. K.; Douglas, J. F., Self-Assembly-Induced Protein Crystallization. Phys. Rev. Lett. 2009, 103 (1).
    67. Chen, Q.; Whitmer, J. K.; Jiang, S.; Bae, S. C.; Luijten, E.; Granick, S., Supracolloidal Reaction Kinetics of Janus Spheres. Science 2011, 331 (6014), 199-202.
    68. (a) Chen, Q.; Bae, S. C.; Granick, S., Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469 (7330), 381-384; (b) Chen, Q.; Diesel, E.; Whitmer, J. K.; Bae, S. C.; Luijten, E.; Granick, S., Triblock Colloids for Directed Self-Assembly. J. Am. Chem. Soc. 2011, 133 (20), 7725-7727.
    69. Whitelam, S.; Bon, S. A. F., Self-assembly of amphiphilic peanut-shaped nanoparticles. J. Chem. Phys. 2010, 132 (7).
    70. Miller, W. L.; Cacciuto, A., Hierarchical self-assembly of asymmetric amphiphatic spherical colloidal particles. Phys. Rev. E 2009, 80 (2).
    71. Gangwal, S.; Cayre, O. J.; Bazant, M. Z.; Velev, O. D., Induced-charge electrophoresis of metallodielectric particles. Phys. Rev. Lett. 2008, 100 (5).
    72. (a) Kinnunen, P.; Sinn, I.; McNaughton, B. H.; Kopelman, R., High frequency asynchronous magnetic bead rotation for improved biosensors. Appl. Phys. Lett. 2010, 97 (Copyright (C) 2011 American Chemical Society (ACS). All Rights Reserved.), 223701/1-223701/3; (b) McNaughton, B. H.; Kinnunen, P.; Smith, R. G.; Pei, S. N.; Torres-Isea, R.; Kopelman, R.; Clarke, R., Compact sensor for measuring nonlinear rotational dynamics of driven magnetic microspheres with biomedical applications. J. Magn. Magn. Mater. 2009, 321 (Copyright (C) 2011 American Chemical Society (ACS). All Rights Reserved.), 1648-1652.
    73. McNaughton, B. H.; Agayan, R. R.; Wang, J. X.; Kopelman, R., Physiochemical microparticle sensors based on nonlinear magnetic oscillations. Sens. Actuators, B 2007, B121 (Copyright (C) 2011 American Chemical Society (ACS). All Rights Reserved.), 330-340.
    74. Isojima, T.; Suh, S. K.; Sande, J. B. V.; Hatton, T. A., Controlled Assembly of Nanoparticle Structures: Spherical and Toroidal Superlattices and Nanoparticle-Coated Polymeric Beads. Langmuir 2009, 25 (14), 8292-8298.
    75. Li, F.; Josephson, D. P.; Stein, A., Colloidal Assembly: The Road from Particles to Colloidal Molecules and Crystals. Angew. Chem.-Int. Edit. 2011, 50 (2), 360-388.
    76. Obeid, R.; Park, J. Y.; Advincula, R. C.; Winnik, F. M., Temperature-dependent interfacial properties of hydrophobically end-modified poly(2-isopropyl-2-oxazoline)s assemblies at the air/water interface and on solid substrates. J. Colloid Interface Sci. 2009, 340 (2), 142-152.
    77. (a) Bong, K. W.; Chapin, S. C.; Doyle, P. S., Magnetic Barcoded Hydrogel Microparticles for Multiplexed Detection. Langmuir 2010, 26 (11), 8008-8014; (b) Ren, B.; Ruditskiy, A.; Song, J. H.; Kretzschmar, I., Assembly Behavior of Iron Oxide-Capped Janus Particles in a Magnetic Field. Langmuir 2012, 28 (2), 1149-1156.
    78. (a) Yuet, K. P.; Hwang, D. K.; Haghgooie, R.; Doyle, P. S., Multifunctional Superparamagnetic Janus Particles. Langmuir 2010, 26 (6), 4281-4287; (b) Kim, S. H.; Sim, J. Y.; Lim, J. M.; Yang, S. M., Magnetoresponsive Microparticles with Nanoscopic Surface Structures for Remote-Controlled Locomotion. Angew. Chem.-Int. Edit. 2010, 49 (22), 3786-3790.
    79. Jenekhe, S. A.; Chen, X. L., Self-assembly of ordered microporous materials from rod-coil block copolymers. Science 1999, 283 (5400), 372-375.
    80. Pregibon, D. C.; Toner, M.; Doyle, P. S., Multifunctional encoded particles for high-throughput biomolecule analysis. Science 2007, 315 (5817), 1393-1396.
    81. Lehmann, O.; Stuke, M., LASER-DRIVEN MOVEMENT OF 3-DIMENSIONAL MICROSTRUCTURES GENERATED BY LASER RAPID PROTOTYPING. Science 1995, 270 (5242), 1644-1646.
    82. Shepherd, R. F.; Panda, P.; Bao, Z.; Sandhage, K. H.; Hatton, T. A.; Lewis, J. A.; Doyle, P. S., Stop-Flow Lithography of Colloidal, Glass, and Silicon Microcomponents. Adv. Mater. 2008, 20 (24), 4734-+.
    83. Chao, Y.-C., Magnetic Manipulation and Anisotropic Performance of Bi-Functionalized Janus Particles. Department of Materials Science and Engineering,NCKU 2011.
    84. Ho, C. C.; Chen, W. S.; Shie, T. Y.; Lin, J. N.; Kuo, C., Novel fabrication of Janus particles from the surfaces of electrospun polymer fibers. Langmuir 2008, 24 (11), 5663-5666.
    85. Wilber, A. W.; Doye, J. P. K.; Louis, A. A.; Noya, E. G.; Miller, M. A.; Wong, P., Reversible self-assembly of patchy particles into monodisperse icosahedral clusters. J. Chem. Phys. 2007, 127 (8).

    無法下載圖示 校內:2021-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE