簡易檢索 / 詳目顯示

研究生: 張品全
Chang, Ping-Chuan
論文名稱: 三族氮化物系列光電元件之研究
The Study of Ⅲ-Nitride Based Optical Devices
指導教授: 張守進
Chang, Shoou-Jinn
蘇炎坤
Su, Yan-Kuin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 124
中文關鍵詞: 發光二極體氮化鎵光檢測器有機金屬氣相磊晶
外文關鍵詞: LED, GaN, MOCVD, PD
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中,我們首先以光激化學沈積系統在氧的情況下,將鎳/金(3nm/6nm)金屬薄膜回火,發現在波長520nm時,金屬薄膜穿透率由65%改善為85%。進ㄧ步地,我們將此不同回火條件的金屬薄膜應用到未摻雜的氮化鎵及氮化鋁鎵/氮化鎵異質結構上,以製作金屬-半導體-金屬結構之光檢測器。我們可以發現經由光激化學沈積系統在氧的環境下回火後,金半金光檢測器的光及電特性都有極大的改善,包括有效蕭基位障高度與光電流及暗電流比。此外,以相同回火條件比較未摻雜的氮化鎵及氮化鋁鎵/氮化鎵異質結構光檢測器,可以發現量子效率分別可以達到13%及57%。因此可以知道利用氮化鋁鎵/氮化鎵異質結構來替代傳統的未摻雜氮化鎵製作光檢測器可以獲得較高的響應、較低的雜訊及較高的檢測率。

      我們使用濺鍍成長的二氧化矽層作為絕緣層及鈍化層以製作金-氧-半異質結構光檢測器。從實驗結果可知在5伏特偏壓下,具有鈍化層的金氧半光檢測器之光電流與暗電流比可高達1.27×104,此外,其紫外光對可見光的拒斥比可高達1000倍以上。

      我們使用氮化銦鎵/氮化鎵多重量子井結構來製作金-半-金光檢測器。我們發現此金半金結構的檢測器光電流與暗電流比值較小,因此我們利用光激化學沈積系統成長一層二氧化矽層以製作金屬-絕緣層-半導體光檢測器。由實驗結果可知藉著加入ㄧ層二氧化矽層可以降低暗電流,且在5.3nm厚度的二氧化矽層下,光電流與暗電流比值可高達1.53×103。

      最後我們製作以一p型氮化銦鎵披覆層作為p型接觸的氮化銦鎵/氮化鎵多重量子井之藍光發光二極體。相較於p型氮化鎵,p型氮化銦鎵可以獲得較高的電洞濃度,因此可將發光二極體的20mA操作電壓從原本的3.78伏特降至3.37伏特,並改善藍光發光二極體的輸出功率及壽命。

     In this thesis, the Ni/Au (3nm/6nm) thin film is annealed by photo-CVD in oxygen. We find the transmittance spectra of the Ni/Au thin film improve from 65% to 85% at 520nm. Further, we applied the Ni/Au thin film under various annealing conditions in the u-GaN sample and AlGaN/GaN heterostructure sample to fabricate Metal-Semiconductor-Metal Ultraviolet Photodetectors. From the experiment results, we knew that the electrical and optical characteristics of the MSM photodetectors have been improved greatly after annealing by photo-CVD in oxygen. Besides, compared with u-GaN sample under the same annealing condition, the AlGaN/GaN heterostructure photodetectors have the larger quantum efficiency (57%). Therefore, we knew that the AlGaN/GaN heterostructure photodetectors have the higher responsivities, the lower noise and higher detectivity.

     GaN-based metal-insulator-semiconductor (MIS) AlGaN/GaN heterostructure ultraviolet (UV) photodetectors with sputtering SiO2 insulation and passivation layers were fabricated. It was found that with a 5 V applied bias, photocurrent to dark current contrast ratio was 2.1104 for the MIS photodetector with passivation. It was also found that UV-to-visible rejection ratio of such MIS photodetector with passivation was more than 3 orders of magnitude while the responsivity was 0.144 A/W with a 5 V applied bias and a 350 nm incident light wavelength. Such a result was much larger than those observed from the MSM photodetector and the MIS photodetector without passivation.

     We use InGaN/GaN MQW photodetectors as the active layer to fabrication the planar GaN-based MQW photodetectors. We found that the leakage current of the MSM MQW photodetectors is too high so we grow a SiO2 layer on the sample by photo-CVD. It was found that we can significantly reduce the dark current of this photodiodes by inserting a thin SiO2 interlayer in between metal electrode and the underneath InGaN/GaN MQW. With a 53nm-thick SiO2 interlayer, it was also found that we could achieve a high 1.53x103 photo current to dark current contrast.

     At last, we fabricate the InGaN/GaN MQW LED with a p-type InGaN as the p-contact. Compared to Mg-doped GaN layers, it was found that we could achieve a much larger hole concentration from Mg-doped In0.23Ga0.77N layers. It was also found that we could reduce the 20 mA operation voltage from 3.78 V to 3.37 V by introducing a 5nm-thick In0.23Ga0.77N layer on top of the p-GaN layer. Furthermore, it was found that output intensity of LEDs with In0.23Ga0.77N capping layer was much larger, particularly at elevated temperatures.

    CHAPTER 1 Introduction------------------------------------------------------- 1 1.1 Crystal Structure of Group III Nitrides-----------------------------------2 1.2 Key issues for III-nitride materials--------------------------------------3 1.3 The MOCVD growth methods of III-Nitrides----------------------------------6 1.4 The background of III-Nitrides Optical Devices----------------------------8 1.4.1 Light Emitting Diodes 1.4.2 Photodetectors (PDs) 1.5 The introduction of photodetectors---------------------------------------10 1.5.1 Photoconductor 1.5.2 Photodetector 1.5.3 Avalanche photodiode 1.6 Overview of this dissertation--------------------------------------------14 CHAPTER 2 Theory, Fabrication and Measurement System-------------------------26 2.1 The theory of metal-semiconductor junction-------------------------------26 2.2 The theory of metal-semiconductor-metal photodetectors-------------------29 2.2.1 The introduction of metal-semiconductor photodetectors 2.2.2 The principle of metal-semiconductor-metal photodetectors 2.3 Fabrication system and measurement theory--------------------------------31 2.3.1.1 Photo-CVD system 2.3.1.2 Growth mechanism of SiO2 2.3.2 RF Sputtering System 2.3.3 The measurement systems 2.4 Fabrication of GaN-based MSM Photodetectors------------------------------36 2.4.1 Mesa isolation 2.4.2 MSM schottky contact 2.4.3 Contact pad CHAPTER 3 The Fabrication and Caracterization of the Ni/Au Semitransparent Contact and MSM AlGaN/GaN Photodetectors-------------------------------------53 3.1 The fabrication of the MSM photodetectors with semitransparent Ni/Au contacts---------------------------------------------------------------------55 3.2 The electrical and optical characteristics of the MSM photodetectors with semitransparent Ni/Au contacts-----------------------------------------------56 3.3 Summary------------------------------------------------------------------62 CHAPTER 4 The Fabrication and Characteristic of the MIS AlGaN/GaN Photodetectors---------------------------------------------------------------74 4.1 The fabrication of the MIS photodetectors--------------------------------74 4.2 The electrical and optical characteristics of the MIS photodetectors-----76 4.3 Summary-----------------------------------------------------------------79 CHAPTER 5 GaN-based MQW Optical Devices-------------------------------------87 5.1 The planar GaN-based MQW Photodetectors----------------------------------87 5.1.1 The fabrication of the MIS MQW photodetectors 5.1.2 The electrical and optical characteristics of the MIS MQW photodetectors 5.1.3 Summary 5.2 The GaN-based MQW LEDs--------------------------------------------------91 5.2.1 The fabrication of the MQW LEDs 5.2.2 The electrical and optical characteristics of the MQW LEDs 5.2.3 Summary CHAPTER 6 Conclusions and Future Work--------------------------------------108 6.1 Conclusions------------------------------------------------------------108 6.2 Future Work------------------------------------------------------------109 References------------------------------------------------------------------110 Publish List----------------------------------------------------------------121 Vita------------------------------------------------------------------------124

    [1] W. Xie, D. C. Grillo, R. L. Gunshor, M. Kobayashi, H. Jeon, J. Ding, A. V. Nurmikko, G. C. Hua, and N. Otsuka, “Room temperature blue light emitting p-n diodes from Zn(S,Se)-based multiple quantum well structures”, Appl. Phys. Lett., Vol. 60, pp.1999, 1992.
    [2] D. E. Eason, Z. Yu, W. C. Hughes, W. H. Roland, C. Boney, J. W. Cook, Jr., J. F. Schetzina, G. Cantwell and W. C. Harasch, “High-brightness blue and green light-emitting diodes”, Appl. Phys. Lett., Vol. 66, pp.115, 1995.
    [3] T. Ohno, A. Ohki, and T. Matsuoka, “Investigation of degradation in homoepitaxially grown ZnCdSe/ZnSe light emitting diode” Jpn. J. Appl. Phys., Vol. 36, pp.L190, 1997.
    [4] T. Nakamura, S. Fujiwara, H. Mori, and K. Katayama, “Novel cladding structure for ZnSe-based white light emitting diodes with longer lifetimes of over 10,000 h”, Jpn. J. Appl. Phys., Vol. 43, pp.1287, 2004.
    [5] T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes”, Jpn. J. Appl. Phys., Vol. 38, pp.3976, 1999.
    [6] T. Egawa, T. Jimbo, and M. Umeno, “Characteristics of InGaN/AlGaN light-emitting diodes on sapphire substrates”, J. Appl. Phys., Vol. 82, pp.5816, 1997.
    [7] H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett., Vol. 48, pp.353, 1986.
    [8] S. D. Lester, F. A. Ponce, M. G. Graford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN-based light-emitting diodes”, Appl. Phys. Lett., Vol. 66, pp.1249, 1995.
    [9] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate”, Appl. Phys. Lett., Vol. 72, pp.211, 1998.
    [10] H. Amano, M. Kito, K. Hiramastsu and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)”, Jpn. J. Appl. Phys., Vol. 28, pp.L2112, 1998.
    [11] S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films”, Jpn. J. Appl. Phys., Vol. 31, pp.L139, 1992.
    [12] E. L. Piner, M. K. Behbehani, N. A. Ei-Masry, F. G. McIntosh, J. C. Roberts, K. S. Boutros and S. M. Bedair, “Effect of hydrogen on the indium incorporation in InGaN epitaxial films”, Appl. Phys. Lett., Vol. 70, pp.461, 1997.
    [13] S. Nakamura, “GaN Growth Using GaN Buffer Layer”, Jpn. J. Appl. Phys., Vol. 30, pp.L1705, 1991.
    [14] M. Kazumura, I. Ohta, and I. Teramoto, “Feasibility of the LPE growth of AlxGayIn1-xP on GaAs substrate”, Jpn. J. Appl. Phys., Vol. 22, pp.654, 1983.
    [15] S. Nakamura, “GaN Growth Using GaN Buffer Layer”, Jpn. J. Appl. Phys., Vol. 30, pp.L1705, 1991.
    [16] S. Nakamura, T. Mokia and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett., Vol. 64, pp.1687, 1994.
    [17] C. P. Kuo, R. M. Fletcher, T.D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett., Vol. 57, pp.2937, 1990.
    [18] S. M. Sze, Physics of Semiconductor Devices 2nd, John Wiley & Sons, 1981.
    [19] Donald A. Neamen, Fundamentals of Semiconductor Physics and Devices 1st, McGraw-Hill, 2003.
    [20] E. H. Rhoderick, and R. H. Williams, Metal-Semiconductor Contacts, Clarendon Press. Oxford, 1998.
    [21] S. M. Sze, Semiconductor Device Physics and Technology, 1985.
    [22] Dieter K. Schroder, Semiconductor Material and Device Characterization 2nd, John Wiley & Sons, 1998.
    [23] Y. Tarui, J. Hidaka and K. Aota, “Low-Temperature Growth of Silicon Dioxide Film by Photo-Chemical Vapor Deposition”, Jpn. J. Appl. Phys., Vol. 23, pp.L827, 1984.
    [24] M. Okuyama, Y. Toyoda and Y. Hamakawa, “Photo-Induced Chemical Vapor Deposition of SiO2 Film Using Direct Excitation Process by Deuterium Lamp”, Jpn. J. Appl. Phys., Vol. 23, pp.L97, 1984.
    [25] H. Okabe, Photochemistry of small molecules, John Wiley, New York.
    [26] Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice Hall.
    [27] S. Nakamura, and G. Fasol, The Blue Laser Diode, Springer, 2000.
    [28] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors”, J.Appl. Phys., Vol. 79, pp.7433, 1996.
    [29] B. W. Lim, S. Gangopadhyay, J. W. Wang, A. Osinsky, Q. Chen, M. Z. Anwar, and M. A. Khan, “8x8 GaN Schottky barrier photodiode array for visible-blind imaging ”, Electron. Lett., Vol. 33, pp.633, 1997.
    [30] A. Osinsky, S. Gangopadhyay, B. W. Lim, “Schottky barrier photodetectors based on AlGaN”, Appl. Phys. Lett., Vol. 72, pp.742, 1998.
    [31] Q. Chen, J. W. Yang, A. Osinsky, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection”, Appl. Phys. Lett., Vol. 70, pp.2277, 1997.
    [32] B. Yang, K. Heng, T. Li, C. J. Collins, S. Wang, R. D. Dupuis, J. C. Campbell, M. J. Schurman, and I. T. Ferguson, “Low dark current GaN avalanche photodiodes ”, IEEE J. Quan. Electron., Vol. 36, pp.1229, 2000.
    [33] D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska and M. A. Khan, “Low-frequency noise and performance of GaN p-n junction photodetectors ”, J. Appl. Phys.,Vol. 83, pp.2142, 1998.
    [34] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars and U. K. Mishra, “High-performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN ”, Appl. Phys. Lett., Vol. 75., pp.247, 1999.
    [35] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez and M. Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes ”, Appl. Phys. Lett., Vol. 74, pp.1171, 1999.
    [36] D. Walker, E. Monroy, P. Kung, “High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN”, Appl. Phys. Lett., Vol. 74, pp.762, 1999.
    [37] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov and H. Temkin, “Low noise p-pi-n GaN ultraviolet photodetectors ”, Appl. Phys. Lett., Vol. 71, pp.2334, 1997.
    [38] A. Osinsky, S. Gangopadhyay, J. W. Yang, “Visible-blind GaN Schottky barrier detectors grown on Si(111)”, Appl. Phys. Lett., Vol. 72, pp.551, 1998.
    [39] S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, V. Divarahan, J. Yang, G. Simin and M. A. Khan, “Low-frequency noise in Al0.4Ga0.6N-based Schottky barrier photodetectors”, Appl. Phys. Lett., Vol. 79, pp.866, 2001.
    [40] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts ”, IEEE Photon. Technol. Lett., Vol. 13, pp.848, 2001.
    [41] Y. K. Su, S. J. Chang, C. H. Chen, J. F. Chen, G. C. Chi, J. K. Sheu, W. C. Lai, and J. M. Tsai, “GaN Metal-Semiconductor-Metal Ultraviolet Sensors With Various Contact Electrodes”, IEEE Sensors Journal, Vol. 2, pp.366, 2002.
    [42] T. Maeda, Y. Koide and M. Murakami, “Effects of NiO on electrical properties of NiAu-based ohmic contacts for p-type GaN ”, Appl. Phys. Lett., Vol. 75, pp.4145, 1999.
    [43] J. C. Jan, K. Asokan, J. W. Chiou, W. F. Pong, P. K. Tseng, M. H. Tsai, Y. K. Chang, Y. Y. Chen, J. F. Lee, J. S. Wu, H. J. Lin, C. T. Chen, L. C. Chen, F. R. Chen, J. K. Ho, “Electronic structure of oxidized Ni/Au contacts on p-GaN investigated by x-ray absorption spectroscopy”, Appl. Phys. Lett., Vol. 78, pp.2718, 2001.
    [44] L. C. Chen, J. K. Ho, C. S. Jong, C. C. Chiu, K. K. Shih, F. R. Chen, J. J. Kai, L. Chang, “Oxidized Ni/Pt and Ni/Au ohmic contacts to p-type GaN”, Appl. Phys. Lett., Vol. 76, pp.3703, 2001.
    [45] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen and K. Shih, “Low-resistance ohmic contacts to p-type GaN”, Appl. Phys. Lett., Vol. 74, pp.1275, 1999.
    [46] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films”, J. Appl. Phys., Vol. 86, pp.4491, 1999.
    [47] L. C. Chen, F. R. Chen, J. J. Kai, L. Chang, J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, K. K. Shih, “Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN”, J. Appl. Phys., Vol. 86, pp.3826, 1999.
    [48] D. Qiao, L. S. Yu, S. S. Lau, J. Y. Lin, H. X. Jiang and T. E. Haynes, “A study of the Au/Ni ohmic contact on p-GaN”, J. Appl. Phys., Vol. 88, pp.4196, 2000.
    [49] J. M. Redwing, M. A. Tischler, J. S. Flynn, S. Elhamri, M. Ahoujja, R. S. Newrock and W. C. Mitchel, “Two-dimensional electron gas properties of AlGaN/GaN heterostructures grown on 6H-SiC and sapphire substrates”, Appl. Phys. Lett., Vol. 69, pp.963, 1996.
    [50] S. Keller, G. Parish, P. T. Fini, S. Heikman, C. H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra and Y. F. Wu, “Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures”, J. Appl. Phys., Vol. 86, pp.5850, 1999.
    [51] G. Y. Zhao, H. Ishikawa, T. Egawa, T. Jimbo and M. Umeno, “High-mobility AlGaN/GaN heterostructures grown on sapphire by metal-organic chemical vapor deposition”, Jpn. J. Appl. Phys., Vol. 39, pp.1035, 2000.
    [52] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, “Low-operation voltage of InGaN/GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer”, IEEE Electron. Device Lett., Vol. 22, pp.460, 2001.
    [53] W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, “InGaN-AlInGaN multiquantum-well LEDs”, IEEE Photon. Technol. Lett., Vol. 13, pp.559, 2001.
    [54] S. N. Mohammad, Z. Fan, A. E. Botchkarev, W. Kim, O. Aktas, and A. Salvador, “Near-ideal platinum–GaN Schottky diodes”, Electron. Lett., Vol. 32, pp. 598-599, 1996.
    [55] J. D. Guo, F. M. Pan, M. S. Feng, R. J. Guo, P. F. Chou, and C. Y. Chang, “Schottky contact and the thermal stability of Ni on n-type GaN ”, J. Appl. Phys. Vol. 80, pp.1623, 1996.
    [56] A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang, and I. Adesida, “High temperature characteristics of Pd Schottky contacts on n-type GaN”, Electron. Lett. Vol. 32, pp.1832, 1996.
    [57] A. Chini, J. Wittich, S. Heikman, S. Keller, S. P. DenBaars and U. K. Mishra, “Power and linearity characteristics of GaN MISFETs on sapphire substrate”, IEEE Electron Device Lett., Vol. 25, 55, 2004.
    [58] P. C. Chang, C. H. Chen, S. J. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, C. H. Liu, H. Hung and S. M. Wang, “InGaN/GaN multi-quantum well metal-insulator semiconductor photodetectors with photo-CVD SiO2 layers”, Jpn. J. Appl. Phys. Vol. 43, pp.2008, 2004.
    [59] T. Nakahara, S. Matsuo, C. Amano and C. Kurokawa, “Switchable-logic photonic switch array monolithically integrating MSMs, FETs, and MQW modulators”, IEEE Photo. Technol. Lett., Vol. 7, pp.53, 1995.
    [60] C. J. Huang and Y. K. Su, “Effect of substrate temperature on the properties of SiO2/InP structure prepared by photochemical vapor deposition”, J. Appl. Phys., Vol. 67, pp.3350, 1990.
    [61] S. J. Chang, Y. K. Su, F. S. Juang, C. T. Lin, C. D. Chiang and Y. T. Cherng, “Photo-enhanced native oxidation process for Hg0.8Cd0.2Te photoconductors”, IEEE J. Quantum Electron., Vol. 36, pp.583, 2000.
    [62] C. T. Lin, Y. K. Su, H. T. Huang, S. J. Chang, G. S. Chen, T. P. Sun and J. J. Luo, “Electrical properties of the stacked ZnS/photo-enhanced native oxide passivation for long wavelength HgCdTe photodiodes”, IEEE Photo. Technol. Lett., Vol. 8, pp.676, 1996.
    [63] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen and J. K. Sheu, “Influence of Si-doping on the characteristics of InGaN-GaN multiple quantum-well blue light emitting diodes”, IEEE J. Quantum. Electron., Vol. 38, pp.446, 2002.
    [64] C. H. Kuo, S. J. Chang, Y K. Su, J. F. Chen, L. W. Wu, J. K. Sheu, C. H. Chen and G. C. Chi, “InGaN/GaN light emitting diodes activated in O2 ambient”, IEEE Electron. Dev. Lett., Vol. 23, pp.240, 2002.
    [65] J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang and Y. K. Su, “White-light emission from InGaN-GaN multiquantum-well light-emitting diodes with Si and Zn codoped active well layer”, IEEE Photon. Technol. Lett., Vol. 14, pp.450, 2002.
    [66] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and J. F. Chen, “High-efficiency InGaN-GaN MQW green light-emitting diodes with CART and DBR structures”, IEEE J. Sel. Top. Quan. Electron., Vol. 8, pp.284, 2002.
    [67] C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi, J. K. Sheu, J. F. Chen, C. H. Liu and U. H. Liaw, “High brightness green light emitting diodes with charge asymmetric resonance tunneling structure”, IEEE Electron. Dev. Lett., Vol. 23, pp.130, 2002.
    [68] T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai C. H. Kuo, C. H. Chen, J. K. Sheu and J. F. Chen, “InGaN/GaN tunnel-injection blue light-emitting diodes”, IEEE Tran. Electron. Dev., Vol. 49, pp.1093, 2002.
    [69] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen and J. K. Sheu, “Influence of Si-doping on the characteristics of InGaN-GaN multiple quantum-well blue light emitting diodes”, IEEE J. Quantum. Electron., Vol. 38, pp.446, 2002.
    [70] Y. L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, “Low-resistance ohmic contacts to p-type GaN”, Appl. Phys. Lett., Vol. 76, pp.2728, 2000.
    [71] P. Kozodoy, M. Hansen, S. P. DenBaars and U. K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices”, Appl. Phys. Lett., Vol. 74, pp.3681, 1999.
    [72] I. D. Goepfert, E. F. Schubert, A. Osinsky, P. E. Norris and N. N. Faleev, “Experimental and theoretical study of acceptor activation and transport properties in p-type AlxGa1-xN/GaN superlattices”, J. Appl. Phys., Vol. 88, pp.2030, 2000.
    [73] K. Kumakura and N. Kobayashi, “Increased electrical activity of Mg-acceptors in AlxGa1-xN/GaN superlattices”, Jpn. J. Appl. Phys., Vol. 38, pp.L1012, 1999.
    [74] J. K. Sheu, G. C. Chi, and M. J. Jou, “Low-operation voltage of InGaN/GaN light-emitting diodes by using a Mg-doped Al0.15Ga0.85N/GaN superlattice”, IEEE Electron Device Lett., Vol. 22, pp.160, 2001.
    [75] A. Kinoshita, H. Hirayama, M. Ainoya, Y. Aoyagi and A. Hirata, “Room-temperature operation at 333 nm of Al0.03Ga0.97N/Al0.25Ga0.75N quantum-well light-emitting diodes with Mg-doped superlattice layers”, Appl. Phys. Lett., Vol. 77, pp.175, 2000.
    [76] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, “Low-operation voltage of InGaN-GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer”, IEEE Electron. Dev. Lett., Vol. 22, pp.460, 2001.
    [77] T. Gessmann, Y. L. Li, E. L. Waldron, J. W. Graff, E. F. Scuubert, and J. K. Sheu, “Ohmic contacts to p-type GaN mediated by polarization fields in thin InxGa1–xN capping layers”, Appl. Phys. Lett., Vol. 80, pp.986, 2002.
    [78] S. Yamasaki, S. Asami, N. Shibata, M. Koike, K. Manabe, T. Tanaka, H. Amano, and I. Akasaki, “p-type conduction in Mg-doped Ga0.91In0.09N grown by metalorganic vapor-phase epitaxy”, Appl. Phys. Lett., Vol. 66, pp.1112, 1995.
    [79] K. Kumakura, T. Makimoto and N. Kobayashi, “Efficient Hole Generation above 1019 cm-3 in Mg-Doped InGaN/GaN Superlattices at Room Temperature”, Jpn. J. Appl. Phys., Vol. 39, pp.L195, 2000.
    [80] K. Kumakura, T. Makimoto and N. Kobayashi, “Activation Energy and Electrical Activity of Mg in Mg-Doped InxGa1-xN (x<0.2)”, Jpn. J. Appl. Phys., Vol. 39, pp.L337, 2000.

    下載圖示 校內:2008-06-10公開
    校外:2010-06-10公開
    QR CODE