簡易檢索 / 詳目顯示

研究生: 洪哲宇
Hung, Jhe-Yu
論文名稱: 核廢料深層處置周圍岩體之熱力-水力-力學耦合行為之研究
Coupled Thermo-Hydro-Mechanical Analysis of Near Rocks on the Geological Disposal of Nuclear Waste
指導教授: 陳昭旭
Chen, Zhao-Xu
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 203
中文關鍵詞: 核廢料深層處置核廢料FLAC3DTOUGH
外文關鍵詞: deep disposal of nuclear waste, nuclear waste, FLAC3D, TOUGH2
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 核廢料為具有長半衰期之高放射性物質,對人類生活環境與生物圈具有威脅性,須採取與人類生活環境長期隔絕之方式加以處理。經過世界各核能使用先進國家之研究顯示,較穩定且安全之處置法為深層地質處置(Deep Geological Disposal)。
    以核廢料深層處置為基本概念,並參考瑞典之相關研究,考慮膨潤土與回填材料所具備之熱力性質及力學特性,由於深層岩體之溫度、水流及應力為相互影響,故在評估深層岩體時,應採取熱力-水力-力學耦合THM(Thermo-Hydro-Mechanical Coupling)之方式以探討其間之關係,藉由FLAC3D及TOUGH2數值分析軟體分析深覆蓋最終處置場周圍岩體之特性,選擇花崗岩性之母岩為模擬場址,設計單孔及雙孔處置坑,並考慮地溫梯度與熱源強度之衰減的影響,比較核廢料放置與未放置時因處置坑間距之變化使處置場周圍岩體,受核廢料罐所引起之溫度場與應力場影響後之發展行為。
    本研究發現在溫度分布的部分,經耦合後之岩體溫度有向上並加速向外擴張的情形;深層處置場之主要張力區域分別位於隧道頂拱、隧道底部與貯存坑口周圍;貯存區域在初期之最大位移為隧道頂拱之z方向垂直位移;垂直位移增加量最大之區域於貯存坑口圍,因貯存初期之坑口受熱效應影響有向上趨勢;貯存坑道之中心點會有對流之現象,溫度越高則水流方向受熱效應影響越大。

    From the studies of spent nuclear fuel disposal methods, they indicate that the deep geologic disposal is the most stable and safest agent to dispose the spent nuclear fuel. When the nuclear waste was placed in deep rocks, it will produce higher temperature and effect the properties of deep rocks. The surrounding rocks exist in a stable condition between the fields of temperature and fluid flow originally, but the balance conditions are changed by the external factors such as engineering works. After the completion of emplacement, filling and sealing, the whole process will cause the thermal-hydraulic- Mechanical effects.

    In this study, we coupled thermo-hydro-mechanical of near rocks on the geological disposal of nuclear waste by using FLAC3D and TOUGH2. The result shows that coupling of the rock temperature will rise and expand outwards; Tension area is mainly distributed in the crown of the tunnel, bottom of the tunnel and around the storage pit; The center of the storage tunnel will found heat flow phenomenon .

    摘要……………………………………………………………………...I 英文摘要………………………………………………...………………II 致謝……………………………………………………………...……...III 目錄 …………………………………………………………….……...IV 表目錄……………………………………………………………...…...IX 圖目錄…………………………………………………………..........….X 符號定義…………………………………………………………...…XVI 第一章 緒論……………………………………………………..………1 1.1前言……………………………………..…………………….…1 1.2研究目的...………………………………………………………3 1.3研究內容….……………………………………………..………4 第二章 前人研究....……………………………………………..………7 2.1核廢料之處置概念……………………..……………………….7 2.1.1核廢料處置方式……………………………..……..………8 2.2核廢料深層處置之相關研究.……………..……..……………12 2.3岩體之基本性質.……………………..…….……………….…14 2.3.1基本熱力學性質…..……………………..………….….…15 2.3.2基本水力學性質…………………..……………..……..…22 2.4受熱岩體之力學行為..……………….…..……………………24 2.5飽和岩層受熱後之水力學行為...……………………………..26 2.6岩體之熱力-水力-力學(THM)行為….……………………..…27 2.7小結…………………………………….………………………35 第三章 理論模式 ..……………………………………………………37 3.1熱傳導理論………………………….….…………….………37 3.1.1卡式直角座標系………………….……..…….…………40 3.1.2圓柱直角座標系…….………………………….……..…40 3.1.3球體座標系…………….…………….……………..……40 3.2熱對流理論………………….…………………..……………41 3.3水流體傳輸理論…………….…………………….….………43 3.4有限差分法(FDM)之數值熱傳輸分析理論….………………45 3.4.1由微分方程式推導……………………..………………..45 3.4.2由能量平衡推導……………………………….…..….…47 3.4.3能量方程式微分推導……………………………………49 3.5 FLAC3D熱傳模式理論……………..…………………..……52 3.5.1基本定義……………………………………..…..………52 3.5.2能量平衡方程式……..……………………..……………53 3.5.3傳輸定律 …………………………………….…….……54 3.5.4初始條件與邊界 ………………………….…….………55 3.5.5力學耦合:熱應變……………………………………….56 3.6 TOUGH2流體傳輸模式理論…………………………..……57 3.7熱衰減公式…………………….………….…………….……62 第四章 數值分析方法…………………………………………………64 4.1 FLAC3D之概述.……………..…………………………64 4.1.1 FLAC3D之基本方程式………………………...………..65 4.1.2 FLAC3D之運算程序………………….……………..…..68 4.1.3 FLAC3D熱傳模式特點………………...………………..69 4.1.4 FLAC3D熱傳分析模式之數值方法………………...…..70 4.1.5 FLAC3D之基本分析架構………………...……………..82 4.1.6 FLAC3D之實際分析步驟………………………...……..84 4.2 TOUGH2之概述………………………….…………….……86 4.2.1 TOUGH2變數矩陣結構………………………….……..87 4.2.2 TOUGH2熱流分析模式之數值方法………..….........…91 4.2.3 TOUGH2之基本分析架構……………………...………94 4.3熱力-水力(TH)與熱力-力學(TM)之數值分析模式耦合.…..95 4.3.1TOUGH2與FLAC3D之耦合方法概述………….……….95 4.3.2 TOUGH2與FLAC3D之耦合關係式……………..……..99 第五章 案例模擬與結果分析…………………………………..……103 5.1模型之橫斷面與尺寸..……………………………….…..…103 5.2邊界條件設定………..………………………………..…….106 5.3 TOUGH2與FLAC3D之網格耦合…...…………………...…112 5.4初始溫度設定…………………..……………………...……115 5.5初始應力設定………………..………………………..….…116 5.6材料參數設定………………..…………………………...…119 5.7模擬案例形式 ………………………..……..…..…….……121 5.8溫度分布………………..………………………..………….123 5.9熱衰減溫度與歷時之關係 …………….……..……………132 5.10最大主應力之分布…………………….………..…………143 5.11位移趨勢…………………..…………….…………………149 5.12水流流向 ……………………………..………..………….158 第六章 結論與建議 …………………………………………………165 6.1結論………………..………………..……………………….165 6.2建議………………..…………………………………..…….167 參考文獻………………………………………………………………168 附錄A………………………………………………………………….A-1 附錄B………………………………………………………………….B-1 附錄C………………………………………………………………….C-1 附錄D………………………………………………………………….D-1

    1. 洪錦雄、莊文壽、劉凌振、董家寶,(2001),我國用過核燃料長程貯存潛在母岩特性調查與評估階段-前二年計畫,功能/安全評估研究-建立深層貯存場初期功能評估技術(I),核能研究所。
    2. 高世鍊,(1998),開挖中隧道變形行為之初步研究,國立成功大學土木工程研究所碩士論文。
    3. 許俊賢,(2004),深層岩體熱力-水力-力學耦合行為之研究,國立成功大學資源工程研究所碩士論文。
    4. 戴豪君,(2003),深層岩體熱力-水力-力學耦合行為之初步研究,國立成功大學資源工程研究所碩士論文。
    5. 鍾柏仁,(2001),核廢料深層貯存進場岩石熱力學行為初步研究,國立成功大學資源工程研究所碩士論文,。
    6. 鄺寶山、王文禮,(1993),FLAC程式於隧道工程之實例分析,地工技術,第41期,pp. 50-61。
    7. 台灣電力公司,(2009),用過核子燃料最終貯存計畫-潛在貯存母岩特性調查與評估階段,成果報告。
    8. Bauer, S.J. and Johnson, B. (1979) Effects of Slow Uniform Heating on the Physical Properties of the Westerly and Charcoal Granites, Proc. 20th Symp. on Rock Mech., Austin, Texas, ASCE, pp.7-18.
    9. Chijimatsu, M., Fujita, T., sugita, Y., Amemiya, K., Kobyyashi, A. (2001) Field experiment, results and THM behavior in the Kamaish mine experiment. International Journal of Rock Mechanics and Mining Sciences, Vol.38, pp.67-78.
    10. Crank, J. (1975) The Mathematics of Diffusion: 2nd Edition, Oxford: Clarendon Press.
    11. Félix, B., Lebon, P., Miguez, R. and Plas, F. (1996) A review of the ANDRA’s research programmes on the thermo-hydromechanical behavior of clay in connection with the radioactive waste disposal project in deep geological formations. Engineering Geology, Vol. 41, pp.35-50.
    12. Goy, L., Fabre, D. and Menard, G. (1996) Modelling of Rock Temperatures for Deep Apine Tunnel Projects, Rock Mech. Rock Eng., Vol. 29, NO.1, pp.1-18.
    13. Hakami, E. and Olofsson, O. (1999) Thermo-Mechanical Effects Around A Radioactive Waste Repository, FLAC and Numerical Modeling in Geomechanics, pp.311-316.
    14. Heuze, F.E., (1983) High Temperature Mechanical, Physical and Thermal Properties off Granitic Rock-AReview. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 20, No. 1, pp.3-10.
    15. Hoek, E. and Brown, E.T. (1980) Empirical Strength Criterion for Rock Masses. J. of the Geotechnical Engineering, ASCE, Vol. 106, NO. GT9, pp.1013-1035.
    16. Hoek, E. and Brown, E.T. (1997) Empirical Strength Criterion for Rock Masses Strength, Int. J. of RockMech. Sci. & Geomech. Abstr., Vol. 34, pp. 1165-1186.
    17. Hokmark, H. (1998) Acceptance of Emplacement Hole Positions-Stage 1 Thermo mechanical Study, Engineering Geology, Vol. 49, pp.215-222.
    18. Itasca Consulting Group, Inc. (1994) Fast Lagrangian Analysis of Continua in 3 Dimensions User's Manual. Minneapolis, Minnesota, U.S.A.
    19. Jaeger, C. (1979) Rock Mechanics and Engineering, 2nd Edition, Cambridge Univ., press.
    20. KAERI (2000) The 2000 Joint Workshop on High-Level Radwaste Disposal Between Korea and Japan, Korea.
    21. Mahtab, M.A. and Wiles, T. (1980) Immobilized Waste Vault: Room-and-Pillar Thermal Rock Mechanics Analyses, AECL TR-54.
    22. Nowacki, W. (1962) Thermo elasticity, New York: Addison-Wesley.
    23. Onofrei, C., Gray, M. (1996) Modeling hydro-thermo-mechanical behavior of engineered clay barriers–Validation phase, Engineering Geology, Vol. 41, pp.301-318.
    24. Pruess, K., Oldenburg, C., Moridis, G. (1999) TOUGH2 User’s Guide, Version 2.0. Earth Sciences Division, Lawrence Berkeley National Laboratory.
    25. Rutqvist, J., Börgesson, L., Chijimatsu, M., Nguyen, T.S., Jing, L., Noorishad, J., Tsang, C.-F. (2001) Coupled thermo-hydro-mechanical analysis of a heater test in fractured rock and bentonite at Kamaishi Mine–comparison of field results to predictions of four finite element codes, International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp.129-142.
    26. Rutqvist, J., Tsang, C. F. (2003) Anslysis of thermal-hydrologic-
    mechanical behavior near an emplacement drift at Yucca Mountain. Journal of Contaminant Hydrology, Vol. 62-63, pp.637-652.
    27. Rutqvist, J., Wu, Y-S., Tsang, C.-F., and Bodvarsson, G. (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, InternationalJournal of Rock Mechanics and Mining Sciences, Vol.39, pp.429-442.
    28. SKB, (1999) Deep Repository for Spent Nuclear Fuel: SR 97 Post-Closure Safety, KBS, Sweden.
    29. SKI, (2007) DECOVALEX-THMC Project Task A Influence of near field coupled THM phenomena on the performance of a spent fuel repository, Sweden.
    30. Tiktinsky, D.H. (1988) Numerical Parametric Sensitivity Study of Thermal and Mechanics Properties forA High Level Nuclear Waste Repository, Proc. of the 29th U.S. Symp. on Rock Mech., pp.429-439.
    31. Tsang, C.-F., Stephansson, O., and Hudson, J.A. (2000) A discussion of thermo-hydro-mechanical (THM)processes associated with nuclear waste repositories, International Journal of Rock Mechanics and Mining Sciences, Vol.37 pp.397-402.
    32. Tsui, K.K., Lee, C.F., Tsai, A. and Harris, N.L. (1982) Thermo mechanical Modeling of A Nuclear Waste Disposal Vault in Crystalline Hard Rock, Proc. of the 4th Int. Conference on Numerical Methods in Geomech, Balkema.
    33. Jonny Rutqvist . (2011) Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations , Comtents & Geosciences , Vol.37 pp.739-750 .

    無法下載圖示 校內:2017-08-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE