簡易檢索 / 詳目顯示

研究生: 張氏秀貞
Truong, Thi Tu Trinh
論文名稱: 微生物揮發性化合物誘導阿拉伯芥氣孔關閉的分子機制
Uncovering molecular mechanisms related to microbial volatile compounds-induced stomatal closure in Arabidopsis
指導教授: 黃浩仁
Huang, Hao-Jen
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 148
中文關鍵詞: Arabidopsis產氣腸桿菌3-methyl-1-butanol微生物揮發性化合物氣孔先天免疫非生物脅迫耐受性促進植物生長
外文關鍵詞: Arabidopsis, Enterobacter aerogenes, 3-methyl-1-butanol, microbial volatile compounds (mVCs), stomatal innate immunity, abiotic stress tolerance, plant growth promotion
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ABSTRACT (Chinese) i ABSTRACT (English) iv Acknowledgements viii Abbreviations x Chapter 1. General introduction 1 1.1 Guard cells and stomata movement 1 1.2 Innate immunity in plants response to bacterial pathogen 2 1.3 Role of stomata in innate immunity 3 1.4 ABA-mediated stomatal closure 5 1.5 PAMP-induced stomatal closure 6 1.6 Cytosolic alkalization in the guard cells 7 1.7 Regulation of stomatal immunity by apoplastic ROS 7 1.8 Microbial volatile compounds (mVOCs) 8 1.9 Conclusion 12 1.10 Summary of main findings 13 Chapter 2. Materials and methods 17 2.1 Plants and growth conditions 17 2.2 Plant-microorganism co-culture system 17 2.3 Measurement of stomatal aperture 18 2.4. Detection of cytosolic pH by epifluorescence microscopy 19 2.5. Detection of reactive oxygen species by epifluorescence microscopy 19 integrated density - (area of selection × mean background fluorescence). 20 2.6. Enterobacter aerogenes cell culture 20 2.7 Treatment with 3-methyl-1-butanol 21 2.8 RNA extraction and quantitative RT-PCR analysis 22 2.9 RNA-seq analysis 23 2.10 Determination of plasma membrane damage in root tips 23 2.11 Data analyses and statistical analyses 23 Chapter 3 Uncovering molecular mechanisms involved in microbial volatile compounds-induced stomatal closure in Arabidopsis thaliana 25 Abstract 26 3.1 Introduction 27 3.2 Results 30 3.2.1 EaVCs induce stomatal closure in Arabidopsis 30 3.2.2 H2O2 generation in guard cells is involved in EaVC-induced stomatal closure 31 3.2.3 ABA, JA and ethylene are involved in EaVC-induced stomatal closure 32 3.2.4 Protein kinase signaling pathways in guard cells are involved in EaVC-induced stomatal closure 36 3.3 Discussion 41 3.3.1 Regulation of pathogen infection and stomatal closure by mVCs 41 3.3.2 Involvement of ROS and phytohormones in mVC-induced stomatal closure 42 3.3.3 Involvement of CWI signaling and MAPK pathway in mVC-induced stomatal closure 43 3.3.4 Differences in response after 3 h and 24 h mVCs exposure 45 Chapter 4 Signaling pathways involved in microbial indoor air pollutant 3 methyl 1 butanol in the induction of stomatal closure in Arabidopsis 51 Abstract 52 Graphical abstract 53 4.1 Introduction 54 4.2 Results 57 4.2.1 3-methyl-1-butanol can induce stomatal closure in Arabidopsis and tobacco 57 4.2.2 H2O2 production and RBOHD are involved in 3MB-induced stomatal closure 59 4.2.3 Receptor-like kinase and MAPK kinases mediate 3MB-induced stomatal closure 60 4.2.4 ABA involves in 3MB-induced stomatal closure 62 4.3 Discussion 63 4.4 Conclusions 68 Chapter 5 Signaling mechanisms of 3-methyl-1-butanol-induced stomatal closure and abiotic stress resistance 71 Abstracts 72 5.1 Introduction 73 5.2 Results 76 5.2.1 Differentially expressed genes (DEGs) following 3-methyl-1-butanol (3MB) fumigation 76 5.2.2 3-methyl-1-butanol regulates the expression of jasmonic acid (JA)- and ethylene (ET)-related genes 78 5.2.4 Jasmonic acid (JA) and ethylene (ET) signaling are involved in 3-methyl-1-butanol (3MB)-induced stomatal closure 82 5.3 Discussion 85 References 94 Appendices 115

    1. Abe, F., &Horikoshi, K. (2005). Enhanced production of isoamyl alcohol and isoamyl acetate by ubiquitination-deficient Saccharomyces cerevisiae mutants. Cellular and Molecular Biology Letters, 10(3), 383–388.
    2. Acharya, B. R., &Assmann, S. M. (2009). Hormone interactions in stomatal function. Plant Molecular Biology, 69(4), 451–462. https://doi.org/10.1007/s11103-008-9427-0
    3. Agarwal, P. K., Agarwal, P., Reddy, M., & Sopory, S. K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25, 1263-1274. https://link.springer.com/article/10.1007/s00299-006-0204-8
    a. Albert, I., Hua, C., Nürnberger, T., Pruitt, R. N., &
    4. Zhang, L. (2020). Surface sensor systems in plant immunity. Plant Physiology, 182(4), 1582-1596.
    5. Allègre, M., Héloir, M. C., Trouvelot, S., Daire, X., Pugin, A., Wendehenne, D., &Adrian, M. (2009). Are grapevine stomata involved in the elicitor-induced protection against downy mildew? Molecular Plant-Microbe Interactions, 22(8), 977–986. https://doi.org/10.1094/MPMI-22-8-0977
    6. Alonso-Villaverde, V., Boso, S., Santiago, J. L., Gago, P., &Martínez, M. C. (2011). Variability of the stomata among Albariño (Vitis vinifera L.) clones and its relationship with susceptibility to downy mildew. Vitis - Journal of Grapevine Research, 50(1), 45–46.
    7. Araki, A., Kawai, T., Eitaki, Y., Kanazawa, A., Morimoto, K., Nakayama, K., Shibata, E., Tanaka, M., Takigawa, T., & Yoshimura, T. (2010). Relationship between selected indoor volatile organic compounds, so-called microbial VOC, and the prevalence of mucous membrane symptoms in single family homes. Science of the Total Environment, 408(10), 2208-2215. https://doi.org/https://doi.org/10.1016/j.scitotenv.2010.02.012
    8. Arnaud, D., & Hwang, I. (2015). A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. Molecular Plant, 8(4), 566-581. https://doi.org/10.1016/j.molp.2014.10.012
    9. Asselbergh, B., DeVleesschauwer, D., &Höfte, M. (2008). Global switches and fine-tuning-ABA modulates plant pathogen defense. Molecular Plant-Microbe Interactions, 21(6), 709–719. https://doi.org/10.1094/MPMI-21-6-0709
    10. Bacete, L., Mélida, H., Miedes, E., & Molina, A. (2018). Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant Journal, 93(4), 614-636. https://doi.org/10.1111/tpj.13807
    11. Bacete, L., Schulz, J., Engelsdorf, T., Bartosova, Z., Vaahtera, L., Yan, G., Gerhold, J. M., Tichá, T., Øvstebø, C., & Gigli-Bisceglia, N. (2022). THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 119(1), e2119258119. https://doi.org/https://doi.org/10.1073/pnas.2119258119
    12. Baez, L. A., Tichá, T., & Hamann, T. (2022). Cell wall integrity regulation across plant species. Plant Molecular Biology, 1-22. https://doi.org/10.1126/science.1170025
    13. Bailly, A., Groenhagen, U., Schulz, S., Geisler, M., Eberl, L., &Weisskopf, L. (2014). The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant Journal, 80(5), 758–771. https://doi.org/10.1111/tpj.12666
    14. Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229-1240. https://doi.org/10.1093/jxb/ert375
    15. Bennett, J., Hung, R., Lee, S., & Padhi, S. (2012). 18 Fungal and bacterial volatile organic compounds: an overview and their role as ecological signaling agents. Fungal associations, 373-393.
    16. Berrocal‐Lobo, M., Molina, A., & Solano, R. (2002). Constitutive expression of ETHYLENE‐RESPONSE‐FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. The Plant Journal, 29(1), 23-32.
    17. Besson-Bard, A., Pugin, A., &Wendehenne, D. (2008). New insights into nitric oxide signaling in plants. Annual Review of Plant Biology, 59, 21–39. https://doi.org/10.1146/annurev.arplant.59.032607.092830
    18. Bharath, P., Gahir, S., & Raghavendra, A. S. (2021). Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress. Frontiers in Plant Science, 12(March), 1-18. https://doi.org/10.3389/fpls.2021.615114
    19. Bigeard, J., Colcombet, J., & Hirt, H. (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521-539. https://doi.org/https://doi.org/10.1016/j.molp.2014.12.022
    20. Blatt, M. R. (1992). K+ channels of stomatal guard cells. Characteristics of the inward rectifier and its control by pH. Journal of General Physiology, 99(4), 615–644. https://doi.org/10.1085/jgp.99.4.615
    21. Blatt, M. R. (2000). in S Tomatal M Ovements in P Lants. Cell. 22.
    23. Blatt, M. R., &Armstrong, F. (1993). K+ channels of stomatal guard cells: Abscisic-acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta, 191(3), 330–341. https://doi.org/10.1007/BF00195690
    24. Boller, T., &Felix, G. (2009). A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–407. https://doi.org/10.1146/annurev.arplant.57.032905.105346
    25. Boudsocq, M., Willmann, M. R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S.-H., & Sheen, J. (2010). Differential innate immune signalling via Ca2+ sensor protein kinases. Nature, 464(7287), 418-422. https://doi.org/https://doi.org/10.1038/nature08794
    26. Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil The Plant Journal 383(1-2), 3-41. https://doi.org/10.1007/s11104-014-2131-8
    27. Camejo, D., Guzmán-Cedeño, Á., &Moreno, A. (2016). Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiology and Biochemistry, 103, 10–23. https://doi.org/10.1016/j.plaphy.2016.02.035
    28. Carmody, M., Waszczak, C., Idänheimo, N., Saarinen, T., & Kangasjärvi, J. (2016). ROS signalling in a destabilised world: A molecular understanding of climate change. Journal of Plant Physiology, 203, 69-83. https://doi.org/https://doi.org/10.1016/j.jplph.2016.06.008
    29. Carrión, V. J., Cordovez, V., Tyc, O., Etalo, D. W., deBruijn, I., deJager, V. C. L., Medema, M. H., Eberl, L., &Raaijmakers, J. M. (2018). Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME Journal, 12(9), 2307–2321. https://doi.org/10.1038/s41396-018-0186-x
    30. Castagna, A., & Ranieri, A. (2009). Detoxification and repair process of ozone injury: from O3 uptake to gene expression adjustment. Environmental Pollution, 157(5), 1461-1469. https://doi.org/https://doi.org/10.1016/j.envpol.2008.09.029
    31. Chang, C.-H., Wang, W.-G., Su, P.-Y., Chen, Y.-S., Nguyen, T.-P., Xu, J., Ohme-Takagi, M., Mimura, T., Hou, P.-F., & Huang, H.-J. (2023). The involvement of AtMKK1 and AtMKK3 in plant-deleterious microbial volatile compounds-induced defense responses. Plant Molecular Biology, 111(1-2), 21-36. https://doi.org/https://doi.org/10.1007/s11103-022-01308-2
    32. Chen, Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., Reva, O., Junge, H., Voigt, B., Jungblut, P. R., Vater, J., Süssmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G., &Borriss, R. (2007). Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, 25(9), 1007–1014.https://doi.org/10.1038/nbt1325
    33. Chiang, C. Y., Chang, C. H., Tseng, T. Y., Nguyen, V. T., Su, P. Y., Truong, T. T., Chen, J. Y., Huang, C. C., & Huang, H. J. (2024). Volatile Compounds Emitted by Plant Growth-Promoting Fungus Tolypocladium inflatum GT22 Alleviate Copper and Pathogen Stress. Plant Cell Physiol, 65(2), 199-215. https://doi.org/10.1093/pcp/pcad120
    34. Cho, S.-M., Kang, B.-R., Kim, J.-J., & Kim, Y.-C. (2012). Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABA-independent stomatal closure. The plant pathology journal, 28(2), 202-206.
    35. Chowdhury, S. P., Uhl, J., Grosch, R., Alquéres, S., Pittroff, S., Dietel, K., Schmitt-Kopplin, P., Borriss, R., &Hartmann, A. (2015). Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Molecular Plant-Microbe Interactions, 28(9), 984–995. https://doi.org/10.1094/MPMI-03-15-0066-R
    36. Connor, M. R., & Liao, J. C. (2008). Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Applied and Environmental Microbiology, 74(18), 5769-5775. https://doi.org/10.1128/AEM.00468-08
    37. Connor, M. R., Cann, A. F., & Liao, J. C. (2010). 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Applied microbiology and biotechnology, 86, 1155-1164.
    38. Conrath, U., Beckers, G. J., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., Newman, M.-A., Pieterse, C. M., Poinssot, B., & Pozo, M. J. (2006). Priming: getting ready for battle. Molecular Plant-Microbe Interactions, 19(10), 1062-1071. https://doi.org/https://doi.org/10.1094/mpmi-19-1062
    39. Cordovez, V., Carrion, V. J., Etalo, D. W., Mumm, R., Zhu, H., vanWezel, G. P., &Raaijmakers, J. M. (2015). Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Frontiers in Microbiology, 6(OCT), 1–13. https://doi.org/10.3389/fmicb.2015.01081
    40. Cordovez, V., Schop, S., Hordijk, K., de Boulois, H. D., Coppens, F., Hanssen, I., Raaijmakers, J. M., & Carrión, V. J. (2018). crossm Priming of Plant Growth Promotion by Volatiles of. 84(22), 1-16.
    41. D’Alessandro, M., Erb, M., Ton, J., Brandenburg, A., Karlen, D., Zopfi, J., &Turlings, T. C. J. (2014). Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant, Cell and Environment, 37(4), 813–826. https://doi.org/10.1111/pce.12220
    42. Dalilla, C. R., Mauricio, B. F., Simone, C. B., Silvia, B., &Sergio, F. P. (2015). Antimicrobial activity of volatile organic compounds and their effect on lipid peroxidation and electrolyte loss in Colletotrichum gloeosporioides and Colletotrichum acutatum mycelia. African Journal of Microbiology Research, 9(23), 1527–1535. https://doi.org/10.5897/ajmr2015.7425
    43. David, L., Harmon, A. C., & Chen, S. (2019). Plant immune responses-from guard cells and local responses to systemic defense against bacterial pathogens. Plant Signaling & Behavior, 14(5), e1588667. https://doi.org/https://doi.org/10.1080/15592324.2019.1588667
    44. Davin-Regli, A., & Pagès, J.-M. (2015). Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Frontiers in Microbiology, 6, 392. https://doi.org/https://doi.org/10.3389/fmicb.2015.00392
    45. Denness, L., McKenna, J. F., Segonzac, C., Wormit, A., Madhou, P., Bennett, M., Mansfield, J., Zipfel, C., & Hamann, T. (2011). Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in arabidopsis. Plant Physiology, 156(3), 1364-1374. https://doi.org/10.1104/pp.111.175737
    46. Di Francesco, A., Ugolini, L., Lazzeri, L., & Mari, M. (2015). Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biological Control, 81, 8-14.
    47. Dóczi, R., Brader, G., Pettkó-Szandtner, A., Rajh, I., Djamei, A., Pitzschke, A., Teige, M., & Hirt, H. (2007). The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell, 19(10), 3266-3279. https://doi.org/10.1105/tpc.106.050039
    48. Doehlemann, G., &Hemetsberger, C. (2013). Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytologist, 198(4), 1001–1016. https://doi.org/10.1111/nph.12277
    49. Ellis, C., & Turner, J. G. (2001). The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. The Plant Cell, 13(5), 1025-1033. https://doi.org/10.1105/tpc.002022.1558
    50. Engelsdorf, T., Gigli-Bisceglia, N., Veerabagu, M., McKenna, J. F., Augstein, F., van der Does, D., Zipfel, C., & Hamann, T. (2017). Plant cell wall integrity maintenance and pattern-triggered immunity modulate jointly plant stress responses in Arabidopsis thaliana. bioRxiv, 130013. https://doi.org/https://doi.org/10.1101/130013
    51. Engelsdorf, T., Gigli-Bisceglia, N., Veerabagu, M., McKenna, J. F., Vaahtera, L., Augstein, F., Van der Does, D., Zipfel, C., & Hamann, T. (2018). The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Science signaling, 11(536), eaao3070. https://doi.org/https://doi.org/10.1126/scisignal.aao3070
    52. Engelberth, J., Contreras, C. F., Dalvi, C., Li, T., & Engelberth, M. (2013). Early transcriptome analyses of Z-3-hexenol-treated Zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles. PLoS ONE, 8(10), e77465. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796489/pdf/pone.0077465.pdf
    53. Engelberth, J., Alborn, H. T., Schmelz, E. A., & Tumlinson, J. H. (2004). Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences, 101(6), 1781-1785. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC341853/pdf/1011781.pdf
    54. Engelberth, J., Seidl-Adams, I., Schultz, J. C., & Tumlinson, J. H. (2007). Insect elicitors and exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of 12-oxo phytodienoic acid reductases in Zea mays. Molecular Plant-Microbe Interactions, 20(6), 707-716.
    55. Engineer, C. B., Hashimoto-Sugimoto, M., Negi, J., Israelsson-Nordström, M., Azoulay-Shemer, T., Rappel, W.-J., Iba, K., & Schroeder, J. I. (2016). CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions. Trends in Plant Science, 21(1), 16-30. https://doi.org/https://doi.org/10.1016/j.tplants.2015.08.014
    56. Ernstgård, L., Norbäck, D., Nordquist, T., Wieslander, G., Wålinder, R., & Johanson, G. (2013). Acute effects of exposure to vapors of 3‐methyl‐1‐butanol in humans. Indoor Air, 23(3), 227-235. https://doi.org/https://doi.org/10.1111/ina.12002
    57. Eun, H.-D., Ali, S., Jung, H., Kim, K., & Kim, W.-C. (2019). Profiling of ACC synthase gene (ACS11) expression in Arabidopsis induced by abiotic stresses. Applied biological chemistry, 62, 1-11.
    58. Farag, M. A., Ryu, C. M., Sumner, L. W., &Paré, P. W. (2006). GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry, 67(20), 2262–2268. https://doi.org/10.1016/j.phytochem.2006.07.021
    59. Farag, M. A., Song, G. C., Park, Y. S., Audrain, B., Lee, S., Ghigo, J. M., Kloepper, J. W., &Ryu, C. M. (2017). Biological and chemical strategies for exploring inter- and intra-kingdom communication mediated via bacterial volatile signals. Nature Protocols, 12(7), 1359–1377. https://doi.org/10.1038/nprot.2017.023
    60. Fiedler, K., Schütz, E., & Geh, S. (2001). Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. International journal of hygiene and environmental health, 204(2-3), 111-121. https://doi.org/https://doi.org/10.1078/1438-4639-00094
    61. Fincheira, P., & Quiroz, A. (2018). Microbial volatiles as plant growth inducers. Microbiol Res, 208, 63-75. https://doi.org/10.1016/j.micres.2018.01.002
    62. Förster, S., Schmidt, L. K., Kopic, E., Anschütz, U., Huang, S., Schlücking, K., Köster, P., Waadt, R., Larrieu, A., & Batistič, O. (2019). Wounding-induced stomatal closure requires jasmonate-mediated activation of GORK K+ channels by a Ca2+ sensor-kinase CBL1-CIPK5 complex. Developmental Cell, 48(1), 87-99. e86. https://riunet.upv.es/handle/10251/158234
    63. Fu, P., Piao, Y., Zhan, Z., Zhao, Y., Pang, W., Li, X., & Piao, Z. (2019). Transcriptome arofile of Brassica rapa L. reveals the involvement of jasmonic acid, ethylene, and brassinosteroid signaling pathways in clubroot resistance. Agronomy, 9(10), 589.
    64. Gao, P., Korley, F., Martin, J., & Chen, B. T. (2002). Determination of unique microbial volatile organic compounds produced by five Aspergillus species commonly found in problem buildings. AIHA Journal, 63(2), 135-140.
    65. García-Gutiérrez, L., Zeriouh, H., Romero, D., Cubero, J., deVicente, A., &Pérez-García, A. (2013). The antagonistic strain Bacillus subtilisUMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microbial Biotechnology, 6(3), 264–274. https://doi.org/10.1111/1751-7915.12028
    66. Gayatri, G., Agurla, S., Kuchitsu, K., Anil, K., Podile, A. R., & Raghavendra, A. S. (2017). Stomatal closure and rise in ROS/NO of arabidopsis guard cells by tobacco microbial elicitors: Cryptogein and harpin. Frontiers in Plant Science, 8(June), 1-10. https://doi.org/10.3389/fpls.2017.01096
    67. Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., Ache, P., Matschi, S., Liese, A., Al-Rasheid, K. A. S., Romeis, T., &Hedrich, R. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences of the United States of America, 106(50), 21425–21430. https://doi.org/10.1073/pnas.0912021106
    68. Geng, S., Misra, B. B., de Armas, E., Huhman, D. V., Alborn, H. T., Sumner, L. W., & Chen, S. (2016). Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics. Plant Journal, 88(6), 947-962. https://doi.org/10.1111/tpj.13296
    69. Gilroy, S., Białasek, M., Suzuki, N., Górecka, M., Devireddy, A. R., Karpiński, S., &Mittler, R. (2016). ROS, calcium, and electric signals: Key mediators of rapid systemic signaling in plants. Plant Physiology, 171(3), 1606–1615. https://doi.org/10.1104/pp.16.00434
    70. Gómez-Gómez, L., &Boller, T. (2000). FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell, 5(6), 1003–1011. https://doi.org/10.1016/s1097-2765(00)80265-8
    71. Gonneau, M., Desprez, T., Martin, M., Doblas, V. G., Bacete, L., Miart, F., Sormani, R., Hématy, K., Renou, J., Landrein, B., Murphy, E., Van DeCotte, B., Vernhettes, S., DeSmet, I., &Höfte, H. (2018). Receptor Kinase THESEUS1 Is a Rapid Alkalinization Factor 34 Receptor in Arabidopsis. Current Biology, 28(15), 2452-2458.e4. https://doi.org/10.1016/j.cub.2018.05.075
    72. Gonugunta, V. K., Srivastava, N., Puli, M. R., &Raghavendra, A. S. (2008). Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid. Plant, Cell and Environment, 31(11), 1717–1724. https://doi.org/10.1111/j.1365-3040.2008.01872.x
    73. Gutterson, N., & Reuber, T. L. (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 7(4), 465-471.
    74. Guzel Deger, A., Scherzer, S., Nuhkat, M., Kedzierska, J., Kollist, H., Brosché, M., Unyayar, S., Boudsocq, M., Hedrich, R., &Roelfsema, M. R. G. (2015). Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure. New Phytologist, 208(1), 162–173. https://doi.org/10.1111/nph.13435
    75. Ha, Y., Shang, Y., & Nam, K. H. (2016). Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis. Journal of Experimental Botany, 67(22), 6297-6308. https://doi.org/10.1093/jxb/erw385
    76. Halim, V. A., Altmann, S., Ellinger, D., Eschen‐Lippold, L., Miersch, O., Scheel, D., & Rosahl, S. (2009). PAMP‐induced defense responses in potato require both salicylic acid and jasmonic acid. The Plant Journal, 57(2), 230-242. https://doi.org/https://doi.org/10.1111/j.1365-313x.2008.03688.x
    77. Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., Cho, B. H., Kim, K. Y., Kim, Y. W., Lee, M. C., Anderson, A. J., &Kim, Y. C. (2006). GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Molecular Plant-Microbe Interactions, 19(8), 924–930. https://doi.org/10.1094/MPMI-19-0924
    78. Hasan, M. M., Rahman, M. A., Skalicky, M., Alabdallah, N. M., Waseem, M., Jahan, M. S., Ahammed, G. J., El-Mogy, M. M., El-Yazied, A. A., & Ibrahim, M. F. (2021). Ozone induced stomatal regulations, MAPK and phytohormone signaling in plants. International Journal of Molecular Sciences, 22(12), 6304. https://doi.org/https://doi.org/10.3390/ijms22126304
    79. Heddergott, C., Latgé, J. P., & Calvo, A. M. (2014). The volatome of Aspergillus fumigatus. Eukaryotic Cell, 13(8), 1014-1025. https://doi.org/10.1128/EC.00074-14
    80. Hématy, K., Sado, P. E., Van Tuinen, A., Rochange, S., Desnos, T., Balzergue, S., Pelletier, S., Renou, J. P., & Höfte, H. (2007). A Receptor-like Kinase Mediates the Response of Arabidopsis Cells to the Inhibition of Cellulose Synthesis. Current Biology, 17(11), 922-931. https://doi.org/10.1016/j.cub.2007.05.018
    81. Hettenhausen, C., Schuman, M. C., & Wu, J. (2015). MAPK signaling: a key element in plant defense response to insects. Insect science, 22(2), 157-164. https://doi.org/https://doi.org/10.1111/1744-7917.12128
    82. Hewedy, O. A., Elsheery, N. I., Karkour, A. M., Elhamouly, N., Arafa, R. A., Mahmoud, G. A.-E., Dawood, M. F.-A., Hussein, W. E., Mansour, A., & Amin, D. H. (2023). Jasmonic acid regulates plant development and orchestrates stress response during tough times. Environmental and Experimental Botany, 208, 105260.
    83. Hill, A. C. (1971). Vegetation: a sink for atmospheric pollutants. Journal of the Air Pollution Control Association, 21(6), 341-346. https://doi.org/https://doi.org/10.1080/00022470.1971.10469535
    84. Hsu, P. K., Dubeaux, G., Takahashi, Y., & Schroeder, J. I. (2021). Signaling mechanisms in abscisic acid‐mediated stomatal closure. The Plant Journal, 105(2), 307-321. https://doi.org/https://doi.org/10.1111/tpj.15067
    85. Imes, D., Mumm, P., Böhm, J., Al-Rasheid, K. A. S., Marten, I., Geiger, D., &Hedrich, R. (2013). Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. Plant Journal, 74(3), 372–382. https://doi.org/10.1111/tpj.12133
    86. Irving, H. R., Gehring, C. A., &Parish, R. W. (1992). Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proceedings of the National Academy of Sciences of the United States of America, 89(5), 1790–1794. https://doi.org/10.1073/pnas.89.5.1790
    87. Jammes, F., Song, C., Shin, D., Munemasa, S., Takeda, K., Gu, D., Cho, D., Lee, S., Giordo, R., Sritubtim, S., Leonhardt, N., Ellis, B. E., Murata, Y., &Kwak, J. M. (2009). MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20520–20525. https://doi.org/10.1073/pnas.0907205106
    88. Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. https://doi.org/https://doi.org/10.1038/nature05286
    89. Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J., & Greenberg, J. T. (2009). Priming in systemic plant immunity. Science, 324(5923), 89-91. https://doi.org/https://doi.org/10.1126/science.1170025
    90. Kadota, Y., Shirasu, K., & Zipfel, C. (2015). Regulation of the NADPH Oxidase RBOHD during Plant Immunity. Plant and Cell Physiology, 56(8), 1472-1480. https://doi.org/10.1093/pcp/pcv063
    91. Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J. D., Shirasu, K., Menke, F., Jones, A., &Zipfel, C. (2014). Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Molecular Cell, 54(1), 43–55. https://doi.org/10.1016/j.molcel.2014.02.021
    92. Kadota1, K. S. and C. Z. (2015). Regulation of the NADPH Oxidase RBOHD during Plant Immunity. Plant and Cell Physiology, 56(8), 1472–1480. https://doi.org/10.1093/pcp/pcv063
    93. Katagiri, F., Thilmony, R., &He, S. Y. (2002). The Arabidopsis Thaliana-Pseudomonas Syringae Interaction. The Arabidopsis Book, 1(Appendix I), e0039. https://doi.org/10.1199/tab.0039
    94. Kesten, C., Gámez‐Arjona, F. M., Menna, A., Scholl, S., Dora, S., Huerta, A. I., Huang, H. Y., Tintor, N., Kinoshita, T., & Rep, M. (2019). Pathogen‐induced pH changes regulate the growth‐defense balance in plants. The EMBO Journal, 38(24), e101822. https://doi.org/https://doi.org/10.15252/embj.2019101822
    95. Khokon, M. A. R., Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I. C., & Murata, Y. (2010). Yeast elicitor-induced stomatal closure and peroxidase-mediated ros production in Arabidopsis. Plant and Cell Physiology, 51(11), 1915-1921. https://doi.org/10.1093/pcp/pcq145
    96. Khokon, M. A. R., Okuma, E., Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I. C., &Murata, Y. (2011). Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant, Cell and Environment, 34(3), 434–443. https://doi.org/10.1111/j.1365-3040.2010.02253.x
    97. Kim, J.-L., Elfman, L., Mi, Y., Wieslander, G., Smedje, G., & Norbäck, D. (2007). Indoor molds, bacteria, microbial volatile organic compounds and plasticizers in schools: associations with asthma and respiratory symptoms in pupils. Indoor Air, 17(2), 153-163. https://doi.org/10.1111/j.1600-0668.2006.00466.x
    98. Kim, T. H., Hauser, F., Ha, T., Xue, S., Böhmer, M., Nishimura, N., Munemasa, S., Hubbard, K., Peine, N., Lee, B. H., Lee, S., Robert, N., Parker, J. E., &Schroeder, J. I. (2011). Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway. Current Biology, 21(11), 990–997. https://doi.org/10.1016/j.cub.2011.04.045
    99. Kim, T.-H., Böhmer, M., Hu, H., Nishimura, N., & Schroeder, J. I. (2010). Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 61, 561-591. https://doi.org/https://doi.org/10.1146/annurev-arplant-042809-112226
    100. Kiviranta, H., Tuomainen, A., Reiman, M., Laitinen, S., Liesivuori, J., & Nevalainen, A. (1998). Qualitative identification of volatile metabolites from two fungi and three bacteria species cultivated on two media. Central European journal of public health, 6(4), 296-299.
    101. Kizis, D., Lumbreras, V., & Pagès, M. (2001). Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS letters, 498(2-3), 187-189. https://www.sciencedirect.com/science/article/pii/S0014579301024607?via%3Dihub
    102. Klimisch, H.-J., & Hellwig, J. (1995). Studies on the prenatal toxicity of 3-methyl-1-butanol and 2-methyl-1-propanol in rats and rabbits following inhalation exposure. Toxicological Sciences, 27(1), 77-89. https://doi.org/https://doi.org/10.1093/toxsci/27.1.77
    103. Kong, W.-L., Wang, Y.-H., & Wu, X.-Q. (2021). Enhanced iron uptake in plants by volatile emissions of Rahnella aquatilis JZ-GX1. Frontiers in Plant Science, 12, 704000. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362888/pdf/fpls-12-704000.pdf
    104. Kong, X., Tian, H., Yu, Q., Zhang, F., Wang, R., Gao, S., Xu, W., Liu, J., Shani, E., & Fu, C. (2018). PHB3 maintains root stem cell niche identity through ROS-responsive AP2/ERF transcription factors in Arabidopsis. Cell Reports, 22(5), 1350-1363.
    105. Korpi, A., Järnberg, J., & Pasanen, A. L. (2009). Microbial volatile organic compounds. Critical Reviews in Toxicology, 39(2), 139-193. https://doi.org/10.1080/10408440802291497
    106. Kozlowski, T. T. (1984). Plant Responses to Flooding of Soil. BioScience, 34(3), 162–167. https://doi.org/10.2307/1309751
    107. Kumar, A. S., Lakshmanan, V., Caplan, J. L., Powell, D., Czymmek, K. J., Levia, D. F., &Bais, H. P. (2012). Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant Journal, 72(4), 694–706. https://doi.org/10.1111/j.1365-313X.2012.05116.x
    108. Kwak, J. M., Mori, I. C., Pei, Z.-M., Leonhardt, N., Torres, M. A., Dangl, J. L., Bloom, R. E., Bodde, S., Jones, J. D., & Schroeder, J. I. (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. The EMBO Journal, 22(11), 2623-2633. https://doi.org/https://doi.org/10.1093/emboj/cdg277
    109. Lawson, T., & Matthews, J. (2020). Guard cell metabolism and stomatal function. Annual Review of Plant Biology, 71, 273-302. https://doi.org/https://doi.org/10.1146/annurev-arplant-050718-100251
    110. Ledger, T., Rojas, S., Timmermann, T., Pinedo, I., Poupin, M. J., Garrido, T., Richter, P., Tamayo, J., & Donoso, R. (2016). Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Frontiers in Microbiology, 7, 1838.
    111. Lee, S., Hung, R., Schink, A., Mauro, J., & Bennett, J. W. (2014). Arabidopsis thaliana for testing the phytotoxicity of volatile organic compounds. Plant Growth Regulation, 74(2), 177-186. https://doi.org/10.1007/s10725-014-9909-9
    112. Lee, Hung, R., Yin, G., Klich, M. A., Grimm, C., &Bennett, J. W. (2016). Arabidopsis thaliana as bioindicator of fungal VOCs in indoor air. Mycobiology, 44(3), 162–170. https://doi.org/10.5941/MYCO.2016.44.3.162
    113. Lee, S. C., Lan, W., Buchanan, B. B., & Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences, 106(50), 21419-21424. https://doi.org/https://doi.org/10.1073/pnas.0910601106
    114. Lee, S., Behringer, G., Hung, R., & Bennett, J. (2019). Effects of fungal volatile organic compounds on Arabidopsis thaliana growth and gene expression. Fungal Ecology, 37, 1-9. https://doi.org/10.1016/j.funeco.2018.08.004
    115. Lee, Seonghee, Rojas, C. M., Ishiga, Y., Pandey, S., &Mysore, K. S. (2013). Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens. PLoS ONE, 8(12), 1–17. https://doi.org/10.1371/journal.pone.0082445
    116. Lee, Y., Kim, Y. J., Kim, M.-h., & Kwak, J. M. (2016). MAPK Cascades in Guard Cell Signal Transduction. 7(February), 1-8. https://doi.org/10.3389/fpls.2016.00080
    117. Leon-Reyes, A., Du, Y., Koornneef, A., Proietti, S., Körbes, A. P., Memelink, J., Pieterse, C. M., & Ritsema, T. (2010). Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Molecular Plant-Microbe Interactions, 23(2), 187-197.
    118. Li, G., & Yen, Y. (2008). Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Science, 48(5), 1888-1896.
    119. Li, L. L., Li, M., Yu, L., Zhou, Z., Liang, X., Liu, Z., Cai, G., Gao, L., Zhang, X., Wang, Y. Y. Y., Chen, S., Zhou, J. M., Prodhan, M. Y., Munemasa, S., Nahar, M. N. E. N., Nakamura, Y., Murata, Y., Seidl-Adams, I., Richter, A., …He, S. Y. (2016). Acetoin and 2,3-butanediol from Bacillus amyloliquefaciens induce stomatal closure in Arabidopsis thaliana and Nicotiana benthamiana. Plant Physiology, 7(1), 5625–5635. https://doi.org/10.1093/jxb/ery326
    120. Li, L., Li, M., Yu, L., Zhou, Z., Liang, X., Liu, Z., Cai, G., Gao, L., Zhang, X., Wang, Y., Chen, S., &Zhou, J. M. (2014). The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host and Microbe, 15(3), 329–338. https://doi.org/10.1016/j.chom.2014.02.009
    121. Li, S., Harley, P. C., & Niinemets, U. (2017). Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris. Plant Cell Environ, 40(9), 1984-2003. https://doi.org/10.1111/pce.13003
    122. Li, T., Jia, K.-P., Lian, H.-L., Yang, X., Li, L., & Yang, H.-Q. (2014). Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochemical and Biophysical Research Communications, 454(1), 78-83.
    123. Li, Y., Xu, S., Wang, Z., He, L., Xu, K., &Wang, G. (2018). Glucose triggers stomatal closure mediated by basal signaling through HXK1 and PYR/RCAR receptors in Arabidopsis. Journal of Experimental Botany, 69(7), 1471–1484. https://doi.org/10.1093/jxb/ery024
    124. Li, Z., Zhang, Y., Ren, J., Jia, F., Zeng, H., Li, G., & Yang, X. (2022). Ethylene‐responsive factor ERF114 mediates fungal pathogen effector PevD1‐induced disease resistance in Arabidopsis thaliana. Molecular Plant Pathology, 23(6), 819-831. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104250/pdf/MPP-23-819.pdf
    125. Lin, P.-A., Chen, Y., Ponce, G., Acevedo, F. E., Lynch, J. P., Anderson, C. T., Ali, J. G., & Felton, G. W. (2022). Stomata-mediated interactions between plants, herbivores, and the environment. Trends in Plant Science, 27(3), 287-300. https://doi.org/:https://doi.org/10.1016/j.tplants.2021.08.017
    126. Liu, J., Zhang, W., Long, S., & Zhao, C. (2021). Maintenance of cell wall integrity under high salinity. International Journal of Molecular Sciences, 22(6), 1-19. https://doi.org/10.3390/ijms22063260
    127. Liu, S., & Wang, R. (2020). Induction of salt tolerance in Arabidopsis thaliana by volatiles from Bacillus amyloliquefaciens FZB42 via the jasmonic acid signaling pathway. Frontiers in Microbiology, 11, 562934. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688926/pdf/fmicb-11-562934.pdf
    128. Liu, Y., & He, C. (2016). Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. Plant Cell Reports, 35, 995-1007. https://doi.org/https://doi.org/10.1007/s00299-016-1950-x
    129. Liu, Y., & He, C. (2017). A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biology, 11, 192-204. https://doi.org/https://doi.org/10.1016/j.redox.2016.12.009
    130. Long, F. L., & Clements, F. E. (1934). the Method of Collodion Films for Stomata. American Journal of Botany, 21(1), 7-17. https://doi.org/10.1002/j.1537-2197.1934.tb08925.x
    131. López-Gresa, M. P., Payá, C., Ozáez, M., Rodrigo, I., Conejero, V., Klee, H., Bellés, J. M., & Lisón, P. (2018). A New Role For Green Leaf Volatile Esters in Tomato Stomatal Defense Against Pseudomonas syringe pv. tomato. Frontiers in Plant Science, 9, 1855-1855. https://doi.org/10.3389/fpls.2018.01855
    132. Lorenzo, O., Piqueras, R., Sánchez-Serrano, J. J., & Solano, R. (2003). ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 15(1), 165-178. https://doi.org/10.1105/tpc.007468
    133. Loreto, F., & Schnitzler, J.-P. (2010). Abiotic stresses and induced BVOCs. Trends in Plant Science, 15(3), 154-166.
    134. Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L., &He, P. (2010). A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 496–501. https://doi.org/10.1073/pnas.0909705107
    135. Ludwików, A., Kierzek, D., Gallois, P., Zeef, L., & Sadowski, J. (2009). Gene expression profiling of ozone-treated Arabidopsis abi1td insertional mutant: protein phosphatase 2C ABI1 modulates biosynthesis ratio of ABA and ethylene. Planta, 230, 1003-1017. https://doi.org/https://doi.org/10.1007/s00425-009-1001-8
    136. Lv, S., Zhang, Y., Li, C., Liu, Z., Yang, N., Pan, L., Wu, J., Wang, J., Yang, J., & Lv, Y. (2018). Strigolactone‐triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid‐independent manner. New Phytologist, 217(1), 290-304.
    137. Ma, M., Cen, W., Li, R., Wang, S., &Luo, J. (2020). The molecular regulatory pathways and metabolic adaptation in the seed germination and early seedling growth of rice in response to low o2 stress. Plants, 9(10), 1–14. https://doi.org/10.3390/plants9101363
    138. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., & Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 324(5930), 1064-1068. https://doi.org/10.1126/science.1172408
    139. Macho, A. P., Boutrot, F., Rathjen, J. P., &Zipfel, C. (2012). ASPARTATE OXIDASE plays an important role in Arabidopsis stomatal immunity. Plant Physiology, 159(4), 1845–1856. https://doi.org/10.1104/pp.112.199810
    140. Manners, J. M., Penninckx, I. A., Vermaere, K., Kazan, K., Brown, R. L., Morgan, A., Maclean, D. J., Curtis, M. D., Cammue, B. P., & Broekaert, W. F. (1998). The promoter of the plant defensin gene PDF1. 2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Molecular Biology, 38, 1071-1080. https://doi.org/10.1111/nph.14813
    141. Mansfield, T., & Majernik, O. (1970). Can stomata play a part in protecting plants against air pollutants? Environmental Pollution (1970), 1(2), 149-154. https://doi.org/https://doi.org/10.1016/0013-9327(70)90015-7
    142. Maleki, F. A., Seidl‐Adams, I., Fahimi, A., Peiffer, M. L., Kersch‐Becker, M. F., Felton, G. W., & Tumlinson, J. H. (2024). Stomatal closure prevents xylem transport of green leaf volatiles and impairs their systemic function in plants. Plant, Cell & Environment, 47(1), 122-139.
    143. Marilley, L., & Casey, M. G. (2004). Flavours of cheese products: metabolic pathways, analytical tools and identification of producing strains. International Journal of Food Microbiology, 90(2), 139-159. https://doi.org/https://doi.org/10.1016/S0168-1605(03)00304-0
    144. Matsui, K. (2016). A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds. Current Opinion in Plant Biology, 32, 24-30. https://doi.org/10.1016/j.pbi.2016.05.005
    145. Mauch-Mani, B., &Mauch, F. (2005). The role of abscisic acid in plant-pathogen interactions. Current Opinion in Plant Biology, 8(4), 409–414. https://doi.org/10.1016/j.pbi.2005.05.015
    146. Mauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense priming: an adaptive part of induced resistance. Annual Review of Plant Biology, 68, 485-512.
    147. McConn, M., Creelman, R. A., Bell, E., Mullet, J. E., & Browse, J. (1997). Jasmonate is essential for insect defense in Arabidopsis. Proceedings of the National Academy of Sciences, 94(10), 5473-5477. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC24703/pdf/pq005473.pdf
    148. Mehrnia, M., Balazadeh, S., Zanor, M.-I., & Mueller-Roeber, B. (2013). EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis. Plant Physiology, 162(2), 842-857. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668074/pdf/842.pdf
    149. Meldau, D. G., Meldau, S., Hoang, L. H., Underberg, S., Wünsche, H., &Baldwin, I. T. (2013). Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell, 25(7), 2731–2747. https://doi.org/10.1105/tpc.113.114744
    150. Melotto, M., Underwood, W., Koczan, J., Nomura, K., & He, S. Y. (2006). Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell, 126(5), 969-980. https://doi.org/10.1016/j.cell.2006.06.054
    151. Melotto, M., Underwood, W., & He, S. Y. (2008). Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol., 46, 101-122.
    152. Melotto, M., Underwood, W., Koczan, J., Nomura, K., &He, S. Y. (2006). Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell, 126(5), 969–980. https://doi.org/10.1016/j.cell.2006.06.054
    153. Melotto, M., Zhang, L., Oblessuc, P. R., &He, S. Y. (2017). Stomatal defense a decade later. Plant Physiology, 174(2), 561–571. https://doi.org/10.1104/pp.16.01853
    154. Memelink, J. (2009). Regulation of gene expression by jasmonate hormones. Phytochemistry, 70(13-14), 1560-1570.
    155. Merilo, E., Laanemets, K., Hu, H., Xue, S., Jakobson, L., Tulva, I., Gonzalez-Guzman, M., Rodriguez, P. L., Schroeder, J. I., & Broschè, M. (2013). PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation. Plant Physiology, 162(3), 1652-1668. https://doi.org/https://doi.org/10.1104/pp.113.220608
    156. Mersmann, S., Bourdais, G., Rietz, S., & Robatzek, S. (2010). Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiology, 154(1), 391-400. https://doi.org/https://doi.org/10.1104/pp.110.154567
    157. Mhamdi, A., & Van Breusegem, F. (2018). Reactive oxygen species in plant development. Development, 145(15), dev164376. https://doi.org/https://doi.org/10.1242/dev.164376
    158. Miles, G. P., Samuel, M. A., Zhang, Y., & Ellis, B. E. (2005). RNA interference-based (RNAi) suppression of AtMPK6, an Arabidopsis mitogen-activated protein kinase, results in hypersensitivity to ozone and misregulation of AtMPK3. Environmental Pollution, 138(2), 230-237. https://doi.org/https://doi.org/10.1016/j.envpol.2005.04.017
    159. Miller, G., Schlauch, K., Tam, R., Cortes, D., Torres, M. A., Shulaev, V., Dangl, J. L., & Mittler, R. (2009). The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science signaling, 2(84), ra45-ra45. https://doi.org/https://doi.org/10.1126/scisignal.2000448
    160. Mittler, R., &Blumwald, E. (2015). The roles of ROS and ABA in systemic acquired acclimation. Plant Cell, 27(1), 64–70. https://doi.org/10.1105/tpc.114.133090
    161. Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V. B., Vandepoele, K., Gollery, M., Shulaev, V., &VanBreusegem, F. (2011). ROS signaling: The new wave? Trends in Plant Science, 16(6), 300–309. https://doi.org/10.1016/j.tplants.2011.03.007
    162. Monaghan, J., &Zipfel, C. (2012). Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology, 15(4), 349–357. https://doi.org/10.1016/j.pbi.2012.05.006
    163. Montillet, J.-L., Leonhardt, N., Mondy, S., Tranchimand, S., Rumeau, D., Boudsocq, M., Garcia, A. V., Douki, T., Bigeard, J., & Lauriere, C. (2013). An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biology, 11(3), e1001513. https://doi.org/https://doi.org/10.1371/journal.pbio.1001513
    164. Morales, J., Kadota, Y., Zipfel, C., Molina, A., & Torres, M.-A. (2016). The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity. Journal of Experimental Botany, 67(6), 1663-1676. https://doi.org/https://doi.org/10.1093/jxb/erv558
    165. Mori, I. C., Murata, Y., Yang, Y., Munemasa, S., Wang, Y. F., Andreoli, S., Tiriac, H., Alonso, J. M., Harper, J. F., Ecker, J. R., Kwak, J. M., &Schroeder, J. I. (2006). CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+- permeable channels and stomatal closure. PLoS Biology, 4(10), 1749–1762. https://doi.org/10.1371/journal.pbio.0040327
    166. Movahedi, M., Zoulias, N., Casson, S. A., Sun, P., Liang, Y.-K., Hetherington, A. M., Gray, J. E., & Chater, C. C. (2021). Stomatal responses to carbon dioxide and light require abscisic acid catabolism in Arabidopsis. Interface Focus, 11(2), 20200036. https://doi.org/https://doi.org/10.1098/rsfs.2020.0036
    167. Munemasa, S., Hauser, F., Park, J., Waadt, R., Brandt, B., &Schroeder, J. I. (2015). Mechanisms of abscisic acid-mediated control of stomatal aperture. Current Opinion in Plant Biology, 28, 154–162. https://doi.org/10.1016/j.pbi.2015.10.010
    168. Munemasa, S., Oda, K., Watanabe-Sugimoto, M., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2007). The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiology, 143(3), 1398-1407. DOI: 10.1104/pp.106.091298
    169. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
    170. Murata, Y., Mori, I. C., & Munemasa, S. (2015). Diverse stomatal signaling and the signal integration mechanism. Annual Review of Plant Biology, 66, 369-392. https://doi.org/10.1146/annurev-arplant-043014-114707
    171. Murata, Y., Pei, Z. M., Mori, I. C., & Schroeder, J. (2002). Erratum: Abscisic acid activation of plasma membrane ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell, 14(1), 287-287. https://doi.org/10.1105/tpc.cor210
    172. Muria-Gonzalez, M. J., Yeng, Y., Breen, S., Mead, O., Wang, C., Chooi, Y.-H., Barrow, R. A., & Solomon, P. S. (2020). Volatile molecules secreted by the wheat pathogen Parastagonospora nodorum are involved in development and phytotoxicity. Frontiers in Microbiology, 11, 466. https://doi.org/https://doi.org/10.3389/fmicb.2020.00466
    173. Mustilli, A. C., Merlot, S., Vavasseur, A., Fenzi, F., &Giraudat, J. (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 14(12), 3089–3099. https://doi.org/10.1105/tpc.007906
    174. Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boller, T., & Jones, J. D. (2004). The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiology, 135(2), 1113-1128. https://doi.org/https://doi.org/10.1104/pp.103.036749
    175. Niu, D. D., Liu, H. X., Jiang, C. H., Wang, Y. P., Wang, Q. Y., Jin, H. L., & Guo, J. H. (2011). The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Molecular Plant-Microbe Interactions, 24(5), 533-542. https://doi.org/10.1094/mpmi-09-10-0213
    176. Norbäck, D., & Cai, G.-H. (2020). Microbial Agents in the Indoor Environment: Associations with Health. In Indoor Environmental Quality and Health Risk toward Healthier Environment for All (pp. 179-198). https://doi.org/10.1007/978-981-32-9182-9_9
    177. Novaković, L., Guo, T., Bacic, A., Sampathkumar, A., & Johnson, K. L. (2018). Hitting the wall—Sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants, 7(4), 89. https://doi.org/https://doi.org/10.3390/plants7040089
    178. Novaković, L., Guo, T., Bacic, A., Sampathkumar, A., &Johnson, K. L. (2018). Hitting the wall—sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. In Plants (Vol. 7, Issue 4, p. 89). MDPI AG. https://doi.org/10.3390/plants7040089
    179. Nowak, D. J., Hirabayashi, S., Bodine, A., & Greenfield, E. (2014). Tree and forest effects on air quality and human health in the United States. Environmental Pollution, 193, 119-129. https://doi.org/https://doi.org/10.1016/j.envpol.2014.05.028
    180. Nürnberger, T., Brunner, F., Kemmerling, B., &Piater, L. (2004). Innate immunity in plants and animals: Striking similarities and obvious differences. Immunological Reviews, 198, 249–266. https://doi.org/10.1111/j.0105-2896.2004.0119.x
    181. Ooi, L., Matsuura, T., Munemasa, S., Murata, Y., Katsuhara, M., Hirayama, T., & Mori, I. C. (2019). The mechanism of SO2‐induced stomatal closure differs from O3 and CO2 responses and is mediated by nonapoptotic cell death in guard cells. Plant, Cell & Environment, 42(2), 437-447. https://doi.org/https://doi.org/10.1111/pce.13406
    182. Panchal, S., & Melotto, M. (2017). Stomate-based defense and environmental cues. Plant Signaling & Behavior, 12(9), e1362517-e1362517. https://doi.org/10.1080/15592324.2017.1362517
    183. Pandey, V. C., & Bauddh, K. (2018). Phytomanagement of polluted sites: market opportunities in sustainable phytoremediation. Elsevier.
    184. Pang, Q., Zhang, T., Zhang, A., Lin, C., Kong, W., & Chen, S. (2020). Proteomics and phosphoproteomics revealed molecular networks of stomatal immune responses. Planta, 252(4), 1-17. https://doi.org/https://doi.org/10.1007/s00425-020-03474-3
    185. Park, Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.-f. F. T. f. F., Alfred, S. E., Bonetta, D., Finkelstein, R., Provart, N. J., Desveaux, D., Rodriguez, P. L., McCourt, P., Zhu, J.-K. J. K. J.-K., Schroeder, J. I., . . . Cutler, S. R. (2009). Abscisic Acid Inhibits Type 2C. Science, 324(May), 1068-1069. http://www.sciencemag.org/cgi/doi/10.1126/science.1173041
    186. Park, S. H., Kim, S., &Hahn, J. S. (2014). Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Applied Microbiology and Biotechnology, 98(21), 9139–9147. https://doi.org/10.1007/s00253-014-6081-0
    187. Park., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T. F. T. -f. F., Alfred, S. E., Bonetta, D., Finkelstein, R., Provart, N. J., Desveaux, D., Rodriguez, P. L., McCourt, P., Zhu, J.-K. J.-K. J.-K., Schroeder, J. I., …Cutler, S. R. (2009). Abscisic Acid Inhibits Type 2C. Science, 324(May), 1068–1069. http://www.sciencemag.org/cgi/doi/10.1126/science.1173041
    188. Pei, Z.-M., Murata, Y., Benning, G., Thomine, S., Klüsener, B., Allen, G. J., Grill, E., & Schroeder, J. I. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 406(6797), 731-734. https://www.nature.com/articles/35021067.pdf
    189. Pellegrini, E., Trivellini, A., Cotrozzi, L., Vernieri, P., & Nali, C. (2016). Involvement of phytohormones in plant responses to ozone. Plant hormones under challenging environmental factors, 215-245.
    190. Phukan, U. J., Jeena, G. S., Tripathi, V., & Shukla, R. K. (2017). Regulation of Apetala2/Ethylene response factors in plants. Frontiers in Plant Science, 8(February), 1-18. https://doi.org/10.3389/fpls.2017.00150
    191. Pieterse, M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Wees, S. C. M. V., & Bakker, P. A. H. M. (2014). Induced Systemic Resistance by Beneficial Microbes. https://doi.org/10.1146/annurev-phyto-082712-102340
    192. Pitzschke, A., Schikora, A., & Hirt, H. (2009). MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology, 12(4), 421-426. https://doi.org/https://doi.org/10.1016/j.pbi.2009.06.008
    193. Qi, J., Wang, J., Gong, Z., &Zhou, J. M. (2017). Apoplastic ROS signaling in plant immunity. Current Opinion in Plant Biology, 38, 92–100. https://doi.org/10.1016/j.pbi.2017.04.022
    194. Qu, S., Zhang, X., Song, Y., Lin, J., & Shan, X. (2017). THESEUS1 positively modulates plant defense responses against Botrytis cinerea through GUANINE EXCHANGE FACTOR4 signaling. Journal of Integrative Plant Biology, 59(11), 797-804. https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jipb.12565?download=true
    195. Ravindra, K., & Mor, S. (2022). Phytoremediation potential of indoor plants in reducing air pollutants. Frontiers in Sustainable Cities, 4, 1039710. https://doi.org/https://doi.org/10.3389/frsc.2022.1039710
    196. Robles, L. M., Wampole, J. S., Christians, M. J., & Larsen, P. B. (2007). Arabidopsis enhanced ethylene response 4 encodes an EIN3-interacting TFIID transcription factor required for proper ethylene response, including ERF1 induction. Journal of Experimental Botany, 58(10), 2627-2639. Russo, A., Pollastri, S., Ruocco, M., Monti, M. M., & Loreto, F. (2022). Volatile organic compounds in the interaction between plants and beneficial microorganisms. Journal of Plant Interactions, 17(1), 840-852.
    197. Robert-Seilaniantz, A., Grant, M., & Jones, J. D. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49, 317-343.
    198. Roux, M., & Zipfel, C. (2011). Receptor kinase interactions: Complexity of signalling. In Receptor-like Kinases in Plants: From Development to Defense (pp. 145-172). Springer.
    199. Rui, Y., & Dinneny, J. R. (2020). A wall with integrity: surveillance and maintenance of the plant cell wall under stress. New Phytologist, 225(4), 1428-1439. https://doi.org/10.1111/nph.16166
    200. Rui, Y., Xiao, C., Yi, H., Kandemir, B., Wang, J. Z., Puri, V. M., & Anderson, C. T. (2017). POLYGALACTURONASE INVOLVED IN EXPANSION3 functions in seedling development, rosette growth, and stomatal dynamics in Arabidopsis thaliana. The Plant Cell, 29(10), 2413-2432. https://doi.org/https://doi.org/10.1105/tpc.17.00568
    201. Ryu, C. M. (2020). Bacterial Volatile Compounds as Mediators of Airborne Interactions. https://doi.org/10.1007/978-981-15-7293-7
    202. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., &Paré, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134(3), 1017–1026. https://doi.org/10.1104/pp.103.026583
    203. Ryu, C. M., Faragt, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W., &Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4927–4932. https://doi.org/10.1073/pnas.0730845100
    204. Ryu, C.-m. (2020). Bacterial Volatile Compounds as Mediators of Airborne Interactions. https://doi.org/10.1007/978-981-15-7293-7
    205. Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Paré, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences, 100(8), 4927-4932.
    206. Sagi, M., & Fluhr, R. (2006). Production of Reactive Oxygen Species by Plant NADPH Oxidases. Plant Physiology, 141(2), 336-340. https://doi.org/10.1104/pp.106.078089
    207. Saito, N., Munemasa, S., Nakamura, Y., Shimoishi, Y., Mori, I. C., & Murata, Y. (2008). Roles of RCN1, regulatory a subunit of protein phosphatase 2a, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant and Cell Physiology, 49(9), 1396-1401. https://doi.org/10.1093/pcp/pcn106
    208. Sakata, N., Ishiga, T., Masuo, S., Hashimoto, Y., & Ishiga, Y. (2021). Coronatine contributes to Pseudomonas cannabina pv. alisalensis virulence by overcoming both stomatal and apoplastic defenses in dicot and monocot plants. Molecular Plant-Microbe Interactions, 34(7), 746-757. https://doi.org/https://doi.org/10.1101/2020.08.19.256685
    209. Sato, H., Takasaki, H., Takahashi, F., Suzuki, T., Iuchi, S., Mitsuda, N., Ohme-Takagi, M., Ikeda, M., Seo, M., & Yamaguchi-Shinozaki, K. (2018). Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress. Proceedings of the National Academy of Sciences, 115(47), E11178-E11187. https://doi.org/https://doi.org/10.1073/pnas.1811491115
    210. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. https://doi.org/10.1038/nmeth.2089
    211. Schroeder, J. I., Kwak, J. M., &Allen, G. J. (2001). Guard cell abscisic acid signalling and engineering drought hardiness in plants. In Nature (Vol. 410, Issue 6826, pp. 327–330). Nature Publishing Group. https://doi.org/10.1038/35066500
    212. Schulz, S., &Dickschat, J. S. (2007). Bacterial volatiles: The smell of small organisms. Natural Product Reports, 24(4), 814–842. https://doi.org/10.1039/b507392h
    213. Shiu, S.-H., Karlowski, W. M., Pan, R., Tzeng, Y.-H., Mayer, K. F., & Li, W.-H. (2004). Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. The Plant Cell, 16(5), 1220-1234. https://doi.org/https://doi.org/10.1105/tpc.020834
    214. Sirichandra, C., Wasilewska, A., Vlad, F., Valon, C., Leung, J., Shpak, E. D., Mcabee, J. M., Nadeau, J. A., Meng, X., Chen, X., Mang, H., Liu, C., Yu, X., Gao, X., Torii, K. U., He, P., Shan, L., Melotto, M., Zhang, L., …He, S. Y. (2009). The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant Cell, 22(6), 984–996. https://doi.org/10.1104/pp.110.157016
    215. Song, Y., Miao, Y., & Song, C. P. (2014). Behind the scenes: The roles of reactive oxygen species in guard cells. New Phytologist, 201(4), 1121-1140. https://doi.org/10.1111/nph.12565
    216. Song, G. C., Jeon, J.-S., Sim, H.-J., Lee, S., Jung, J., Kim, S.-G., Moon, S. Y., & Ryu, C.-M. (2022). Dual functionality of natural mixtures of bacterial volatile compounds on plant growth. Journal of Experimental Botany, 73(2), 571-583.
    217. Splivallo, R., Novero, M., Bertea, C. M., Bossi, S., & Bonfante, P. (2007). Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytologist, 175(3), 417-424. https://doi.org/10.1111/j.1469-8137.2007.02141.x
    218. Spoel, S. H., &Dong, X. (2008). Making Sense of Hormone Crosstalk during Plant Immune Responses. Cell Host and Microbe, 3(6), 348–351. https://doi.org/10.1016/j.chom.2008.05.009
    219. Staswick, P. E., & Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugate it to isoleucine in Arabidopsis. Plant Cell, 16(8), 2117-2127. https://doi.org/10.1105/tpc.104.023549
    220. Staswick, P. E., Tiryaki, I., & Rowe, M. L. (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell, 14(6), 1405-1415. https://doi.org/10.1105/tpc.000885
    221. Su, J., Zhang, M., Zhang, L., Sun, T., Liu, Y., Lukowitz, W., Xu, J., & Zhang, S. (2017). Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell, 29(3), 526-542. https://doi.org/10.1105/tpc.16.00577
    222. Suhita, D., Raghavendra, A. S., Kwak, J. M., & Vavasseur, A. (2004). Cytoplasmic Alkalization Precedes Reactive Oxygen Species Production during Methyl Jasmonate-and Abscisic Acid-Induced Stomatal Closure 1. https://doi.org/10.1104/pp.103.032250
    223. Suhita, D., Raghavendra, A. S., Kwak, J. M., &Vavasseur, A. (2004). Cytoplasmic Alkalization Precedes Reactive Oxygen Species Production during Methyl Jasmonate-and Abscisic Acid-Induced Stomatal Closure 1. https://doi.org/10.1104/pp.103.032250
    224. Sussmilch, F. C., Brodribb, T. J., & McAdam, S. A. M. (2017). Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. Journal of Experimental Botany, 68(11), 2913-2918. https://doi.org/10.1093/jxb/erx124
    225. Syed-Ab-Rahman, S. F., Carvalhais, L. C., Chua, E. T., Chung, F. Y., Moyle, P. M., Eltanahy, E. G., & Schenk, P. M. (2019). Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth. Science of the Total Environment, 692, 267-280. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.07.061
    226. Tahir, H. A. S., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., Colman, M. V., & Gao, X. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in Microbiology, 8(FEB), 1-11. https://doi.org/10.3389/fmicb.2017.00171
    227. Tanaka, K., & Heil, M. (2021). Damage-associated molecular patterns (DAMPs) in plant innate immunity: applying the danger model and evolutionary perspectives. Annual Review of Phytopathology, 59, 53-75.
    228. Thor, K., Jiang, S., Michard, E., George, J., Scherzer, S., Huang, S., Dindas, J., Derbyshire, P., Leitão, N., & DeFalco, T. A. (2020). The calcium-permeable channel OSCA1. 3 regulates plant stomatal immunity. Nature, 585(7826), 569-573. https://doi.org/https://doi.org/10.1038/s41586-020-2954-9
    229. Tian, W., Hou, C., Ren, Z., Wang, C., Zhao, F., Dahlbeck, D., Hu, S., Zhang, L., Niu, Q., Li, L., Staskawicz, B. J., &Luan, S. (2019). A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature, 572(7767), 131–135. https://doi.org/10.1038/s41586-019-1413-y
    230. Tischer, S. V., Wunschel, C., Papacek, M., Kleigrewe, K., Hofmann, T., Christmann, A., & Grill, E. (2017). Combinatorial interaction network of abscisic acid receptors and coreceptors from Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 114(38), 10280-10285. https://doi.org/https://doi.org/10.1073/pnas.1706593114
    231. Torres, M. A., & Dangl, J. L. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology, 8(4), 397-403. https://doi.org/https://doi.org/10.1016/j.pbi.2005.05.014
    232. Torres, M. A., Dangl, J. L., & Jones, J. D. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences, 99(1), 517-522. https://www.pnas.org/doi/pdf/10.1073/pnas.012452499
    233. Treesubsuntorn, C., & Thiravetyan, P. (2012). Removal of benzene from indoor air by Dracaena sanderiana: Effect of wax and stomata. Atmospheric Environment, 57, 317-321. https://doi.org/https://doi.org/10.1016/j.atmosenv.2012.04.016
    234. Truong, T.-T. T., Chiu, C.-C., Chen, J.-Y., Su, P.-Y., Nguyen, T.-P., Trinh, N.-N., Mimura, T., Lee, R.-H., Chang, C.-H., & Huang, H.-J. (2023). Uncovering molecular mechanisms involved in microbial volatile compounds-induced stomatal closure in Arabidopsis thaliana. Plant Molecular Biology, 113(4), 143-155.
    235. Truong, T.-T. T., Chiu, C.-C., Su, P.-Y., Chen, J.-Y., Nguyen, T.-P., Ohme-Takagi, M., Lee, R.-H., Cheng, W.-H., & Huang, H.-J. (2024). Signaling pathways involved in microbial indoor air pollutant 3-methyl-1-butanol in the induction of stomatal closure in Arabidopsis. Environmental Science and Pollution Research, 1-13.
    236. Vahisalu, T., Puzõrjova, I., Brosché, M., Valk, E., Lepiku, M., Moldau, H., Pechter, P., Wang, Y. S., Lindgren, O., & Salojärvi, J. (2010). Ozone‐triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. The Plant Journal, 62(3), 442-453. https://doi.org/https://doi.org/10.1111/j.1365-313X.2010.04159.x
    237. Vainonen, J. P., & Kangasjärvi, J. (2015). Plant signalling in acute ozone exposure. Plant, Cell & Environment, 38(2), 240-252. https://doi.org/https://doi.org/10.1111/pce.12273
    238. Van der Does, D., Boutrot, F., Engelsdorf, T., Rhodes, J., McKenna, J. F., Vernhettes, S., Koevoets, I., Tintor, N., Veerabagu, M., Miedes, E., Segonzac, C., Roux, M., Breda, A. S., Hardtke, C. S., Molina, A., Rep, M., Testerink, C., Mouille, G., Höfte, H., . . . Zipfel, C. (2017). The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genetics, 13(6), 1-27. https://doi.org/10.1371/journal.pgen.1006832
    239. Van Loon, L., Bakker, P., & Pieterse, C. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453-483. https://doi.org/https://doi.org/10.1146/annurev.phyto.36.1.453
    240. Vardoulakis, S., Giagloglou, E., Steinle, S., Davis, A., Sleeuwenhoek, A., Galea, K. S., Dixon, K., & Crawford, J. O. (2020). Indoor exposure to selected air pollutants in the home environment: A systematic review. International journal of environmental research and public health, 17(23), 8972. https://doi.org/10.3390/ijerph17238972
    241. Vogt, M., Brüsseler, C., Ooyen, J.van, Bott, M., &Marienhagen, J. (2016). Production of 2-methyl-1-butanol and 3-methyl-1-butanol in engineered Corynebacterium glutamicum. Metabolic Engineering, 38(July), 436–445. https://doi.org/10.1016/j.ymben.2016.10.007
    242. Wan, X. R., & Li, L. (2006). Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. Biochemical and Biophysical Research Communications, 347(4), 1030-1038. https://doi.org/10.1016/j.bbrc.2006.07.0260
    243. Wang, C., Lu, W., He, X., Wang, F., Zhou, Y., Guo, X., & Guo, X. (2016). The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant and Cell Physiology The Plant Journal 57(8), 1629-1642. https://pubmed.ncbi.nlm.nih.gov/27335349/
    244. Wang, H. Q., Sun, L. P., Wang, L. X., Fang, X. W., Li, Z. Q., Zhang, F. F., Hu, X., Qi, C., & He, J. M. (2020). Ethylene mediates salicylic-acid-induced stomatal closure by controlling reactive oxygen species and nitric oxide production in Arabidopsis. Plant Science, 294, 110464-110464. https://doi.org/10.1016/j.plantsci.2020.110464
    245. Wang, H., Ngwenyama, N., Liu, Y., Walker, J. C., & Zhang, S. (2007). Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. The Plant Cell, 19(1), 63-73. https://doi.org/https://doi.org/10.1105/tpc.106.048298
    246. Wang, J., Janson, C., Gislason, T., Gunnbjörnsdottir, M., Jogi, R., Orru, H., & Norbäck, D. (2023). Volatile organic compounds (VOC) in homes associated with asthma and lung function among adults in Northern Europe. Environmental Pollution, 321, 121103. https://doi.org/https://doi.org/10.1016/j.envpol.2023.121103
    247. Wang, J., Janson, C., Gislason, T., Gunnbjörnsdottir, M., Jogi, R., Orru, H., & Norbäck, D. (2023). Volatile organic compounds (VOC) in homes associated with asthma and lung function among adults in Northern Europe. Environmental Pollution, 321, 121103. https://doi.org/https://doi.org/10.1016/j.envpol.2023.121103
    248. Wang, L., & Erb, M. (2022). Volatile uptake , transport , perception , and signaling shape a plant ’ s nose. 0(July), 1-8. https://doi.org/https://doi.org/10.1042/ebc20210092
    249. Wang, Z., & Gou, X. (2022). The first line of defense: Receptor-like protein kinase-mediated stomatal immunity. International Journal of Molecular Sciences, 23(1). https://doi.org/10.3390/ijms23010343
    250. Weisskopf, L., Schulz, S., &Garbeva, P. (2021). Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nature Reviews Microbiology. https://doi.org/10.1038/s41579-020-00508-1
    251. Wenke, K., Wanke, D., Kilian, J., Berendzen, K., Harter, K., & Piechulla, B. (2012). Volatiles of two growth‐inhibiting rhizobacteria commonly engage AtWRKY18 function. The Plant Journal, 70(3), 445-459.
    252. Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C. M., van Loon, L. C., & Bakker, P. A. (2012). Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology, 102(4), 403-412.
    253. Wesevich, A., Sutton, G., Ruffin, F., Park, L. P., Fouts, D. E., Fowler, V. G., &Thaden, J. T. (2020). Newly named klebsiella aerogenes (formerly enterobacter aerogenes) is associated with poor clinical outcomes relative to other enterobacter species in patients with bloodstream infection. Journal of Clinical Microbiology, 58(9). https://doi.org/10.1128/JCM.00582-20
    254. Weyens, N., Thijs, S., Popek, R., Witters, N., Przybysz, A., Espenshade, J., Gawronska, H., Vangronsveld, J., & Gawronski, S. W. (2015). The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. International Journal of Molecular Sciences, 16(10), 25576-25604. https://mdpi-res.com/d_attachment/ijms/ijms-16-25576/article_deploy/ijms-16-25576.pdf?version=1445861508
    255. Wheatley, R. E. (2002). The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 81(1–4), 357–364. https://doi.org/10.1023/A:1020592802234
    256. Wolf, S. (2017). Plant cell wall signalling and receptor-like kinases. Biochemical Journal, 474(4), 471-492. https://doi.org/10.1042/bcj20160238
    257. Wu, H.-C., Huang, Y.-C., Stracovsky, L., & Jinn, T.-L. (2017). Pectin methylesterase is required for guard cell function in response to heat. Plant Signaling & Behavior, 12(6), e1338227.
    258. Wu, L., Chen, X., Ren, H., Zhang, Z., Zhang, H., Wang, J., Wang, X.-C., & Huang, R. (2007). ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco. Planta, 226, 815-825. https://link.springer.com/article/10.1007/s00425-007-0528-9
    259. Wu, L., Huang, Z., Li, X., Ma, L., Gu, Q., Wu, H., Liu, J., Borriss, R., Wu, Z., & Gao, X. (2018a). Stomatal closure and SA-, JA/ET-signaling pathways are essential for Bacillus amyloliquefaciens FZB42 to restrict leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana. Frontiers in Microbiology, 9(APR), 1-8. https://doi.org/10.3389/fmicb.2018.00847
    260. Wu, L., Li, X., Ma, L., Borriss, R., Wu, Z., & Gao, X. (2018b). Acetoin and 2,3-butanediol from Bacillus amyloliquefaciens induce stomatal closure in Arabidopsis thaliana and Nicotiana benthamiana. Journal of Experimental Botany, 69(22), 5625-5635. https://doi.org/10.1093/jxb/ery326
    261. Wu, L., Zhang, Z., Zhang, H., Wang, X.-C., & Huang, R. (2008). Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiology, 148(4), 1953-1963. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593663/pdf/pp1481953.pdf
    262. Wu, P.-H., Ho, Y.-L., Ho, T.-S., Chang, C.-H., Ye, J.-C., Wang, C.-H., Sung, H.-M., Huang, H.-J., & Liu, C.-C. (2019). Microbial volatile compounds-induced cytotoxicity in the yeast Saccharomyces cerevisiae: The role of MAPK signaling and proteasome regulatory pathway. Chemosphere, 233, 786-795. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.05.293
    263. Xing, Y., Jia, W., & Zhang, J. (2008). AtMKK1 mediates ABA‐induced CAT1 expression and H2O2 production via AtMPK6‐coupled signaling in Arabidopsis. The Plant Journal, 54(3), 440-451.https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-313X.2008.03433.x?download=true
    264. Xu, J., Li, Y., Wang, Y., Liu, H., Lei, L., Yang, H., Liu, G., & Ren, D. (2008). Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. Journal of Biological Chemistry, 283(40), 26996-27006.
    265. Yalage Don, S., Schmidtke, L., Gambetta, J., & Steel, C. (2020). Aureobasidium pullulans volatilome identified by a novel, quantitative approach employing SPME-GC-MS, suppressed Botrytis cinerea and Alternaria alternata in vitro. Scientific Reports, 10(1), 4498.
    266. Yang, D.-L., Zhang, Z.-N., Liu, H., Yang, Z.-Y., Liu, M.-M., Zheng, Q.-X., Chen, W., & Xiang, P. (2022). Indoor air pollution and human ocular diseases: Associated contaminants and underlying pathological mechanisms. Chemosphere, 137037. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.137037
    267. Yang, Z., Tian, L., Latoszek-Green, M., Brown, D., & Wu, K. (2005). Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Molecular Biology The Plant Journal 58(4), 585-596. https://doi.org/10.1007/s11103-005-7294-5
    268. Yin, Y., Adachi, Y., Nakamura, Y., Munemasa, S., Mori, I. C., & Murata, Y. (2016). Involvement of OST1 protein kinase and PYR/PYL/RCAR receptors in methyl jasmonate-induced stomatal closure in Arabidopsis guard cells. Plant and Cell Physiology, 57(8), 1779-1790. https://doi.org/10.1093/pcp/pcw102
    269. Yin, Y., Adachi, Y., Ye, W., Hayashi, M., Nakamura, Y., Kinoshita, T., Mori, I. C., &Murata, Y. (2013). Difference in abscisic acid perception mechanisms between closure induction and opening inhibition of stomata. Plant Physiology, 163(2), 600–610. https://doi.org/10.1104/pp.113.223826
    270. Yoneya, K., & Takabayashi, J. (2014). Plant–plant communication mediated by airborne signals: ecological and plant physiological perspectives. Plant Biotechnology, 31(5), 409-416.
    271. Yoo, M. H., Kwon, Y. J., Son, K.-C., & Kays, S. J. (2006). Efficacy of indoor plants for the removal of single and mixed volatile organic pollutants and physiological effects of the volatiles on the plants. Journal of the American Society for Horticultural Science, 131(4), 452-458. https://doi.org/https://doi.org/10.21273/JASHS.131.4.452
    272. Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F., &Shinozaki, K. (2006). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. Journal of Biological Chemistry, 281(8), 5310–5318. https://doi.org/10.1074/jbc.M509820200
    273. Yu, H., Chen, X., Hong, Y. Y., Wang, Y., Xu, P., Ke, S. D., Liu, H. Y., Zhu, J. K., Oliver, D. J., & Xiang, C. B. (2008). Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell, 20(4), 1134-1151. https://doi.org/10.1105/tpc.108.058263
    274. Yuan, M., Ngou, B. P. M., Ding, P., & Xin, X. F. (2021). PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology, 62, 102030-102030.
    275. Zhang, L., Li, Z., Quan, R., Li, G., Wang, R., & Huang, R. (2011). An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. Plant Physiology, 157(2), 854-865.
    276. Zhang, T. Y., Li, Z. Q., Zhao, Y. D., Shen, W. J., Chen, M. S., Gao, H. Q., Ge, X. M., Wang, H. Q., Li, X., & He, J. M. (2021). Ethylene‐induced stomatal closure is mediated via MKK1/3–MPK3/6 cascade to EIN2 and EIN3. Journal of Integrative Plant Biology, 63(7), 1324-1340. https://doi.org/https://doi.org/10.1111/jipb.13083
    277. Zhao, G., Yin, G., Inamdar, A., Luo, J., Zhang, N., Yang, I., Buckley, B., & Bennett, J. (2017). Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity
    278. Zheng, X., Kang, S., Jing, Y., Ren, Z., Li, L., Zhou, J. M., Berkowitz, G., Shi, J., Fu, A., Lan, W., Zhao, F., & Luan, S. (2018). Danger-associated peptides close stomata by OST1-independent activation of anion channels in guard cells. Plant Cell, 30(5), 1132-1146. https://doi.org/10.1105/tpc.17.00701
    279. Zeng, W., & He, S. Y. (2010). A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiology, 153(3), 1188-1198. https://doi.org/https://doi.org/10.1104/pp.110.157016
    280. Zipfel, C., & Oldroyd, G. E. (2017). Plant signalling in symbiosis and immunity. Nature, 543(7645), 328-336.
    281. Zhou, J., Sun, A., & Xing, D. (2013). Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum. Journal of Experimental Botany, 64(11), 3261-3272. https://doi.org/10.1093/jxb/ert166
    282. Zhou, J. M., & Zhang, Y. (2020). Plant Immunity: Danger Perception and Signaling. In (Vol. 181, pp. 978-989): Cell Press.
    283. Zhu, F., Xi, D.-H., Deng, X.-G., Peng, X.-J., Tang, H., Chen, Y.-J., Jian, W., Feng, H., & Lin, H.-H. (2014). The chilli veinal mottle virus regulates expression of the tobacco mosaic virus resistance gene N and jasmonic acid/ethylene signaling is essential for systemic resistance against chilli veinal mottle virus in tobacco. Plant Molecular Biology Reporter, 32, 382-394.

    無法下載圖示 校內:2028-12-31公開
    校外:2028-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE