| 研究生: |
張氏秀貞 Truong, Thi Tu Trinh |
|---|---|
| 論文名稱: |
微生物揮發性化合物誘導阿拉伯芥氣孔關閉的分子機制 Uncovering molecular mechanisms related to microbial volatile compounds-induced stomatal closure in Arabidopsis |
| 指導教授: |
黃浩仁
Huang, Hao-Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | Arabidopsis 、產氣腸桿菌 、3-methyl-1-butanol 、微生物揮發性化合物 、氣孔先天免疫 、非生物脅迫耐受性 、促進植物生長 |
| 外文關鍵詞: | Arabidopsis, Enterobacter aerogenes, 3-methyl-1-butanol, microbial volatile compounds (mVCs), stomatal innate immunity, abiotic stress tolerance, plant growth promotion |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Abe, F., &Horikoshi, K. (2005). Enhanced production of isoamyl alcohol and isoamyl acetate by ubiquitination-deficient Saccharomyces cerevisiae mutants. Cellular and Molecular Biology Letters, 10(3), 383–388.
2. Acharya, B. R., &Assmann, S. M. (2009). Hormone interactions in stomatal function. Plant Molecular Biology, 69(4), 451–462. https://doi.org/10.1007/s11103-008-9427-0
3. Agarwal, P. K., Agarwal, P., Reddy, M., & Sopory, S. K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25, 1263-1274. https://link.springer.com/article/10.1007/s00299-006-0204-8
a. Albert, I., Hua, C., Nürnberger, T., Pruitt, R. N., &
4. Zhang, L. (2020). Surface sensor systems in plant immunity. Plant Physiology, 182(4), 1582-1596.
5. Allègre, M., Héloir, M. C., Trouvelot, S., Daire, X., Pugin, A., Wendehenne, D., &Adrian, M. (2009). Are grapevine stomata involved in the elicitor-induced protection against downy mildew? Molecular Plant-Microbe Interactions, 22(8), 977–986. https://doi.org/10.1094/MPMI-22-8-0977
6. Alonso-Villaverde, V., Boso, S., Santiago, J. L., Gago, P., &Martínez, M. C. (2011). Variability of the stomata among Albariño (Vitis vinifera L.) clones and its relationship with susceptibility to downy mildew. Vitis - Journal of Grapevine Research, 50(1), 45–46.
7. Araki, A., Kawai, T., Eitaki, Y., Kanazawa, A., Morimoto, K., Nakayama, K., Shibata, E., Tanaka, M., Takigawa, T., & Yoshimura, T. (2010). Relationship between selected indoor volatile organic compounds, so-called microbial VOC, and the prevalence of mucous membrane symptoms in single family homes. Science of the Total Environment, 408(10), 2208-2215. https://doi.org/https://doi.org/10.1016/j.scitotenv.2010.02.012
8. Arnaud, D., & Hwang, I. (2015). A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. Molecular Plant, 8(4), 566-581. https://doi.org/10.1016/j.molp.2014.10.012
9. Asselbergh, B., DeVleesschauwer, D., &Höfte, M. (2008). Global switches and fine-tuning-ABA modulates plant pathogen defense. Molecular Plant-Microbe Interactions, 21(6), 709–719. https://doi.org/10.1094/MPMI-21-6-0709
10. Bacete, L., Mélida, H., Miedes, E., & Molina, A. (2018). Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant Journal, 93(4), 614-636. https://doi.org/10.1111/tpj.13807
11. Bacete, L., Schulz, J., Engelsdorf, T., Bartosova, Z., Vaahtera, L., Yan, G., Gerhold, J. M., Tichá, T., Øvstebø, C., & Gigli-Bisceglia, N. (2022). THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 119(1), e2119258119. https://doi.org/https://doi.org/10.1073/pnas.2119258119
12. Baez, L. A., Tichá, T., & Hamann, T. (2022). Cell wall integrity regulation across plant species. Plant Molecular Biology, 1-22. https://doi.org/10.1126/science.1170025
13. Bailly, A., Groenhagen, U., Schulz, S., Geisler, M., Eberl, L., &Weisskopf, L. (2014). The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant Journal, 80(5), 758–771. https://doi.org/10.1111/tpj.12666
14. Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229-1240. https://doi.org/10.1093/jxb/ert375
15. Bennett, J., Hung, R., Lee, S., & Padhi, S. (2012). 18 Fungal and bacterial volatile organic compounds: an overview and their role as ecological signaling agents. Fungal associations, 373-393.
16. Berrocal‐Lobo, M., Molina, A., & Solano, R. (2002). Constitutive expression of ETHYLENE‐RESPONSE‐FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. The Plant Journal, 29(1), 23-32.
17. Besson-Bard, A., Pugin, A., &Wendehenne, D. (2008). New insights into nitric oxide signaling in plants. Annual Review of Plant Biology, 59, 21–39. https://doi.org/10.1146/annurev.arplant.59.032607.092830
18. Bharath, P., Gahir, S., & Raghavendra, A. S. (2021). Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress. Frontiers in Plant Science, 12(March), 1-18. https://doi.org/10.3389/fpls.2021.615114
19. Bigeard, J., Colcombet, J., & Hirt, H. (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521-539. https://doi.org/https://doi.org/10.1016/j.molp.2014.12.022
20. Blatt, M. R. (1992). K+ channels of stomatal guard cells. Characteristics of the inward rectifier and its control by pH. Journal of General Physiology, 99(4), 615–644. https://doi.org/10.1085/jgp.99.4.615
21. Blatt, M. R. (2000). in S Tomatal M Ovements in P Lants. Cell. 22.
23. Blatt, M. R., &Armstrong, F. (1993). K+ channels of stomatal guard cells: Abscisic-acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta, 191(3), 330–341. https://doi.org/10.1007/BF00195690
24. Boller, T., &Felix, G. (2009). A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–407. https://doi.org/10.1146/annurev.arplant.57.032905.105346
25. Boudsocq, M., Willmann, M. R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S.-H., & Sheen, J. (2010). Differential innate immune signalling via Ca2+ sensor protein kinases. Nature, 464(7287), 418-422. https://doi.org/https://doi.org/10.1038/nature08794
26. Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil The Plant Journal 383(1-2), 3-41. https://doi.org/10.1007/s11104-014-2131-8
27. Camejo, D., Guzmán-Cedeño, Á., &Moreno, A. (2016). Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiology and Biochemistry, 103, 10–23. https://doi.org/10.1016/j.plaphy.2016.02.035
28. Carmody, M., Waszczak, C., Idänheimo, N., Saarinen, T., & Kangasjärvi, J. (2016). ROS signalling in a destabilised world: A molecular understanding of climate change. Journal of Plant Physiology, 203, 69-83. https://doi.org/https://doi.org/10.1016/j.jplph.2016.06.008
29. Carrión, V. J., Cordovez, V., Tyc, O., Etalo, D. W., deBruijn, I., deJager, V. C. L., Medema, M. H., Eberl, L., &Raaijmakers, J. M. (2018). Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME Journal, 12(9), 2307–2321. https://doi.org/10.1038/s41396-018-0186-x
30. Castagna, A., & Ranieri, A. (2009). Detoxification and repair process of ozone injury: from O3 uptake to gene expression adjustment. Environmental Pollution, 157(5), 1461-1469. https://doi.org/https://doi.org/10.1016/j.envpol.2008.09.029
31. Chang, C.-H., Wang, W.-G., Su, P.-Y., Chen, Y.-S., Nguyen, T.-P., Xu, J., Ohme-Takagi, M., Mimura, T., Hou, P.-F., & Huang, H.-J. (2023). The involvement of AtMKK1 and AtMKK3 in plant-deleterious microbial volatile compounds-induced defense responses. Plant Molecular Biology, 111(1-2), 21-36. https://doi.org/https://doi.org/10.1007/s11103-022-01308-2
32. Chen, Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., Reva, O., Junge, H., Voigt, B., Jungblut, P. R., Vater, J., Süssmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G., &Borriss, R. (2007). Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, 25(9), 1007–1014.https://doi.org/10.1038/nbt1325
33. Chiang, C. Y., Chang, C. H., Tseng, T. Y., Nguyen, V. T., Su, P. Y., Truong, T. T., Chen, J. Y., Huang, C. C., & Huang, H. J. (2024). Volatile Compounds Emitted by Plant Growth-Promoting Fungus Tolypocladium inflatum GT22 Alleviate Copper and Pathogen Stress. Plant Cell Physiol, 65(2), 199-215. https://doi.org/10.1093/pcp/pcad120
34. Cho, S.-M., Kang, B.-R., Kim, J.-J., & Kim, Y.-C. (2012). Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABA-independent stomatal closure. The plant pathology journal, 28(2), 202-206.
35. Chowdhury, S. P., Uhl, J., Grosch, R., Alquéres, S., Pittroff, S., Dietel, K., Schmitt-Kopplin, P., Borriss, R., &Hartmann, A. (2015). Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Molecular Plant-Microbe Interactions, 28(9), 984–995. https://doi.org/10.1094/MPMI-03-15-0066-R
36. Connor, M. R., & Liao, J. C. (2008). Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Applied and Environmental Microbiology, 74(18), 5769-5775. https://doi.org/10.1128/AEM.00468-08
37. Connor, M. R., Cann, A. F., & Liao, J. C. (2010). 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Applied microbiology and biotechnology, 86, 1155-1164.
38. Conrath, U., Beckers, G. J., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., Newman, M.-A., Pieterse, C. M., Poinssot, B., & Pozo, M. J. (2006). Priming: getting ready for battle. Molecular Plant-Microbe Interactions, 19(10), 1062-1071. https://doi.org/https://doi.org/10.1094/mpmi-19-1062
39. Cordovez, V., Carrion, V. J., Etalo, D. W., Mumm, R., Zhu, H., vanWezel, G. P., &Raaijmakers, J. M. (2015). Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Frontiers in Microbiology, 6(OCT), 1–13. https://doi.org/10.3389/fmicb.2015.01081
40. Cordovez, V., Schop, S., Hordijk, K., de Boulois, H. D., Coppens, F., Hanssen, I., Raaijmakers, J. M., & Carrión, V. J. (2018). crossm Priming of Plant Growth Promotion by Volatiles of. 84(22), 1-16.
41. D’Alessandro, M., Erb, M., Ton, J., Brandenburg, A., Karlen, D., Zopfi, J., &Turlings, T. C. J. (2014). Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant, Cell and Environment, 37(4), 813–826. https://doi.org/10.1111/pce.12220
42. Dalilla, C. R., Mauricio, B. F., Simone, C. B., Silvia, B., &Sergio, F. P. (2015). Antimicrobial activity of volatile organic compounds and their effect on lipid peroxidation and electrolyte loss in Colletotrichum gloeosporioides and Colletotrichum acutatum mycelia. African Journal of Microbiology Research, 9(23), 1527–1535. https://doi.org/10.5897/ajmr2015.7425
43. David, L., Harmon, A. C., & Chen, S. (2019). Plant immune responses-from guard cells and local responses to systemic defense against bacterial pathogens. Plant Signaling & Behavior, 14(5), e1588667. https://doi.org/https://doi.org/10.1080/15592324.2019.1588667
44. Davin-Regli, A., & Pagès, J.-M. (2015). Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Frontiers in Microbiology, 6, 392. https://doi.org/https://doi.org/10.3389/fmicb.2015.00392
45. Denness, L., McKenna, J. F., Segonzac, C., Wormit, A., Madhou, P., Bennett, M., Mansfield, J., Zipfel, C., & Hamann, T. (2011). Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in arabidopsis. Plant Physiology, 156(3), 1364-1374. https://doi.org/10.1104/pp.111.175737
46. Di Francesco, A., Ugolini, L., Lazzeri, L., & Mari, M. (2015). Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biological Control, 81, 8-14.
47. Dóczi, R., Brader, G., Pettkó-Szandtner, A., Rajh, I., Djamei, A., Pitzschke, A., Teige, M., & Hirt, H. (2007). The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell, 19(10), 3266-3279. https://doi.org/10.1105/tpc.106.050039
48. Doehlemann, G., &Hemetsberger, C. (2013). Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytologist, 198(4), 1001–1016. https://doi.org/10.1111/nph.12277
49. Ellis, C., & Turner, J. G. (2001). The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. The Plant Cell, 13(5), 1025-1033. https://doi.org/10.1105/tpc.002022.1558
50. Engelsdorf, T., Gigli-Bisceglia, N., Veerabagu, M., McKenna, J. F., Augstein, F., van der Does, D., Zipfel, C., & Hamann, T. (2017). Plant cell wall integrity maintenance and pattern-triggered immunity modulate jointly plant stress responses in Arabidopsis thaliana. bioRxiv, 130013. https://doi.org/https://doi.org/10.1101/130013
51. Engelsdorf, T., Gigli-Bisceglia, N., Veerabagu, M., McKenna, J. F., Vaahtera, L., Augstein, F., Van der Does, D., Zipfel, C., & Hamann, T. (2018). The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Science signaling, 11(536), eaao3070. https://doi.org/https://doi.org/10.1126/scisignal.aao3070
52. Engelberth, J., Contreras, C. F., Dalvi, C., Li, T., & Engelberth, M. (2013). Early transcriptome analyses of Z-3-hexenol-treated Zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles. PLoS ONE, 8(10), e77465. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796489/pdf/pone.0077465.pdf
53. Engelberth, J., Alborn, H. T., Schmelz, E. A., & Tumlinson, J. H. (2004). Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences, 101(6), 1781-1785. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC341853/pdf/1011781.pdf
54. Engelberth, J., Seidl-Adams, I., Schultz, J. C., & Tumlinson, J. H. (2007). Insect elicitors and exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of 12-oxo phytodienoic acid reductases in Zea mays. Molecular Plant-Microbe Interactions, 20(6), 707-716.
55. Engineer, C. B., Hashimoto-Sugimoto, M., Negi, J., Israelsson-Nordström, M., Azoulay-Shemer, T., Rappel, W.-J., Iba, K., & Schroeder, J. I. (2016). CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions. Trends in Plant Science, 21(1), 16-30. https://doi.org/https://doi.org/10.1016/j.tplants.2015.08.014
56. Ernstgård, L., Norbäck, D., Nordquist, T., Wieslander, G., Wålinder, R., & Johanson, G. (2013). Acute effects of exposure to vapors of 3‐methyl‐1‐butanol in humans. Indoor Air, 23(3), 227-235. https://doi.org/https://doi.org/10.1111/ina.12002
57. Eun, H.-D., Ali, S., Jung, H., Kim, K., & Kim, W.-C. (2019). Profiling of ACC synthase gene (ACS11) expression in Arabidopsis induced by abiotic stresses. Applied biological chemistry, 62, 1-11.
58. Farag, M. A., Ryu, C. M., Sumner, L. W., &Paré, P. W. (2006). GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry, 67(20), 2262–2268. https://doi.org/10.1016/j.phytochem.2006.07.021
59. Farag, M. A., Song, G. C., Park, Y. S., Audrain, B., Lee, S., Ghigo, J. M., Kloepper, J. W., &Ryu, C. M. (2017). Biological and chemical strategies for exploring inter- and intra-kingdom communication mediated via bacterial volatile signals. Nature Protocols, 12(7), 1359–1377. https://doi.org/10.1038/nprot.2017.023
60. Fiedler, K., Schütz, E., & Geh, S. (2001). Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. International journal of hygiene and environmental health, 204(2-3), 111-121. https://doi.org/https://doi.org/10.1078/1438-4639-00094
61. Fincheira, P., & Quiroz, A. (2018). Microbial volatiles as plant growth inducers. Microbiol Res, 208, 63-75. https://doi.org/10.1016/j.micres.2018.01.002
62. Förster, S., Schmidt, L. K., Kopic, E., Anschütz, U., Huang, S., Schlücking, K., Köster, P., Waadt, R., Larrieu, A., & Batistič, O. (2019). Wounding-induced stomatal closure requires jasmonate-mediated activation of GORK K+ channels by a Ca2+ sensor-kinase CBL1-CIPK5 complex. Developmental Cell, 48(1), 87-99. e86. https://riunet.upv.es/handle/10251/158234
63. Fu, P., Piao, Y., Zhan, Z., Zhao, Y., Pang, W., Li, X., & Piao, Z. (2019). Transcriptome arofile of Brassica rapa L. reveals the involvement of jasmonic acid, ethylene, and brassinosteroid signaling pathways in clubroot resistance. Agronomy, 9(10), 589.
64. Gao, P., Korley, F., Martin, J., & Chen, B. T. (2002). Determination of unique microbial volatile organic compounds produced by five Aspergillus species commonly found in problem buildings. AIHA Journal, 63(2), 135-140.
65. García-Gutiérrez, L., Zeriouh, H., Romero, D., Cubero, J., deVicente, A., &Pérez-García, A. (2013). The antagonistic strain Bacillus subtilisUMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microbial Biotechnology, 6(3), 264–274. https://doi.org/10.1111/1751-7915.12028
66. Gayatri, G., Agurla, S., Kuchitsu, K., Anil, K., Podile, A. R., & Raghavendra, A. S. (2017). Stomatal closure and rise in ROS/NO of arabidopsis guard cells by tobacco microbial elicitors: Cryptogein and harpin. Frontiers in Plant Science, 8(June), 1-10. https://doi.org/10.3389/fpls.2017.01096
67. Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., Ache, P., Matschi, S., Liese, A., Al-Rasheid, K. A. S., Romeis, T., &Hedrich, R. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences of the United States of America, 106(50), 21425–21430. https://doi.org/10.1073/pnas.0912021106
68. Geng, S., Misra, B. B., de Armas, E., Huhman, D. V., Alborn, H. T., Sumner, L. W., & Chen, S. (2016). Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics. Plant Journal, 88(6), 947-962. https://doi.org/10.1111/tpj.13296
69. Gilroy, S., Białasek, M., Suzuki, N., Górecka, M., Devireddy, A. R., Karpiński, S., &Mittler, R. (2016). ROS, calcium, and electric signals: Key mediators of rapid systemic signaling in plants. Plant Physiology, 171(3), 1606–1615. https://doi.org/10.1104/pp.16.00434
70. Gómez-Gómez, L., &Boller, T. (2000). FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell, 5(6), 1003–1011. https://doi.org/10.1016/s1097-2765(00)80265-8
71. Gonneau, M., Desprez, T., Martin, M., Doblas, V. G., Bacete, L., Miart, F., Sormani, R., Hématy, K., Renou, J., Landrein, B., Murphy, E., Van DeCotte, B., Vernhettes, S., DeSmet, I., &Höfte, H. (2018). Receptor Kinase THESEUS1 Is a Rapid Alkalinization Factor 34 Receptor in Arabidopsis. Current Biology, 28(15), 2452-2458.e4. https://doi.org/10.1016/j.cub.2018.05.075
72. Gonugunta, V. K., Srivastava, N., Puli, M. R., &Raghavendra, A. S. (2008). Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid. Plant, Cell and Environment, 31(11), 1717–1724. https://doi.org/10.1111/j.1365-3040.2008.01872.x
73. Gutterson, N., & Reuber, T. L. (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 7(4), 465-471.
74. Guzel Deger, A., Scherzer, S., Nuhkat, M., Kedzierska, J., Kollist, H., Brosché, M., Unyayar, S., Boudsocq, M., Hedrich, R., &Roelfsema, M. R. G. (2015). Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure. New Phytologist, 208(1), 162–173. https://doi.org/10.1111/nph.13435
75. Ha, Y., Shang, Y., & Nam, K. H. (2016). Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis. Journal of Experimental Botany, 67(22), 6297-6308. https://doi.org/10.1093/jxb/erw385
76. Halim, V. A., Altmann, S., Ellinger, D., Eschen‐Lippold, L., Miersch, O., Scheel, D., & Rosahl, S. (2009). PAMP‐induced defense responses in potato require both salicylic acid and jasmonic acid. The Plant Journal, 57(2), 230-242. https://doi.org/https://doi.org/10.1111/j.1365-313x.2008.03688.x
77. Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., Cho, B. H., Kim, K. Y., Kim, Y. W., Lee, M. C., Anderson, A. J., &Kim, Y. C. (2006). GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Molecular Plant-Microbe Interactions, 19(8), 924–930. https://doi.org/10.1094/MPMI-19-0924
78. Hasan, M. M., Rahman, M. A., Skalicky, M., Alabdallah, N. M., Waseem, M., Jahan, M. S., Ahammed, G. J., El-Mogy, M. M., El-Yazied, A. A., & Ibrahim, M. F. (2021). Ozone induced stomatal regulations, MAPK and phytohormone signaling in plants. International Journal of Molecular Sciences, 22(12), 6304. https://doi.org/https://doi.org/10.3390/ijms22126304
79. Heddergott, C., Latgé, J. P., & Calvo, A. M. (2014). The volatome of Aspergillus fumigatus. Eukaryotic Cell, 13(8), 1014-1025. https://doi.org/10.1128/EC.00074-14
80. Hématy, K., Sado, P. E., Van Tuinen, A., Rochange, S., Desnos, T., Balzergue, S., Pelletier, S., Renou, J. P., & Höfte, H. (2007). A Receptor-like Kinase Mediates the Response of Arabidopsis Cells to the Inhibition of Cellulose Synthesis. Current Biology, 17(11), 922-931. https://doi.org/10.1016/j.cub.2007.05.018
81. Hettenhausen, C., Schuman, M. C., & Wu, J. (2015). MAPK signaling: a key element in plant defense response to insects. Insect science, 22(2), 157-164. https://doi.org/https://doi.org/10.1111/1744-7917.12128
82. Hewedy, O. A., Elsheery, N. I., Karkour, A. M., Elhamouly, N., Arafa, R. A., Mahmoud, G. A.-E., Dawood, M. F.-A., Hussein, W. E., Mansour, A., & Amin, D. H. (2023). Jasmonic acid regulates plant development and orchestrates stress response during tough times. Environmental and Experimental Botany, 208, 105260.
83. Hill, A. C. (1971). Vegetation: a sink for atmospheric pollutants. Journal of the Air Pollution Control Association, 21(6), 341-346. https://doi.org/https://doi.org/10.1080/00022470.1971.10469535
84. Hsu, P. K., Dubeaux, G., Takahashi, Y., & Schroeder, J. I. (2021). Signaling mechanisms in abscisic acid‐mediated stomatal closure. The Plant Journal, 105(2), 307-321. https://doi.org/https://doi.org/10.1111/tpj.15067
85. Imes, D., Mumm, P., Böhm, J., Al-Rasheid, K. A. S., Marten, I., Geiger, D., &Hedrich, R. (2013). Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. Plant Journal, 74(3), 372–382. https://doi.org/10.1111/tpj.12133
86. Irving, H. R., Gehring, C. A., &Parish, R. W. (1992). Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proceedings of the National Academy of Sciences of the United States of America, 89(5), 1790–1794. https://doi.org/10.1073/pnas.89.5.1790
87. Jammes, F., Song, C., Shin, D., Munemasa, S., Takeda, K., Gu, D., Cho, D., Lee, S., Giordo, R., Sritubtim, S., Leonhardt, N., Ellis, B. E., Murata, Y., &Kwak, J. M. (2009). MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20520–20525. https://doi.org/10.1073/pnas.0907205106
88. Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. https://doi.org/https://doi.org/10.1038/nature05286
89. Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J., & Greenberg, J. T. (2009). Priming in systemic plant immunity. Science, 324(5923), 89-91. https://doi.org/https://doi.org/10.1126/science.1170025
90. Kadota, Y., Shirasu, K., & Zipfel, C. (2015). Regulation of the NADPH Oxidase RBOHD during Plant Immunity. Plant and Cell Physiology, 56(8), 1472-1480. https://doi.org/10.1093/pcp/pcv063
91. Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J. D., Shirasu, K., Menke, F., Jones, A., &Zipfel, C. (2014). Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Molecular Cell, 54(1), 43–55. https://doi.org/10.1016/j.molcel.2014.02.021
92. Kadota1, K. S. and C. Z. (2015). Regulation of the NADPH Oxidase RBOHD during Plant Immunity. Plant and Cell Physiology, 56(8), 1472–1480. https://doi.org/10.1093/pcp/pcv063
93. Katagiri, F., Thilmony, R., &He, S. Y. (2002). The Arabidopsis Thaliana-Pseudomonas Syringae Interaction. The Arabidopsis Book, 1(Appendix I), e0039. https://doi.org/10.1199/tab.0039
94. Kesten, C., Gámez‐Arjona, F. M., Menna, A., Scholl, S., Dora, S., Huerta, A. I., Huang, H. Y., Tintor, N., Kinoshita, T., & Rep, M. (2019). Pathogen‐induced pH changes regulate the growth‐defense balance in plants. The EMBO Journal, 38(24), e101822. https://doi.org/https://doi.org/10.15252/embj.2019101822
95. Khokon, M. A. R., Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I. C., & Murata, Y. (2010). Yeast elicitor-induced stomatal closure and peroxidase-mediated ros production in Arabidopsis. Plant and Cell Physiology, 51(11), 1915-1921. https://doi.org/10.1093/pcp/pcq145
96. Khokon, M. A. R., Okuma, E., Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I. C., &Murata, Y. (2011). Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant, Cell and Environment, 34(3), 434–443. https://doi.org/10.1111/j.1365-3040.2010.02253.x
97. Kim, J.-L., Elfman, L., Mi, Y., Wieslander, G., Smedje, G., & Norbäck, D. (2007). Indoor molds, bacteria, microbial volatile organic compounds and plasticizers in schools: associations with asthma and respiratory symptoms in pupils. Indoor Air, 17(2), 153-163. https://doi.org/10.1111/j.1600-0668.2006.00466.x
98. Kim, T. H., Hauser, F., Ha, T., Xue, S., Böhmer, M., Nishimura, N., Munemasa, S., Hubbard, K., Peine, N., Lee, B. H., Lee, S., Robert, N., Parker, J. E., &Schroeder, J. I. (2011). Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway. Current Biology, 21(11), 990–997. https://doi.org/10.1016/j.cub.2011.04.045
99. Kim, T.-H., Böhmer, M., Hu, H., Nishimura, N., & Schroeder, J. I. (2010). Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 61, 561-591. https://doi.org/https://doi.org/10.1146/annurev-arplant-042809-112226
100. Kiviranta, H., Tuomainen, A., Reiman, M., Laitinen, S., Liesivuori, J., & Nevalainen, A. (1998). Qualitative identification of volatile metabolites from two fungi and three bacteria species cultivated on two media. Central European journal of public health, 6(4), 296-299.
101. Kizis, D., Lumbreras, V., & Pagès, M. (2001). Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS letters, 498(2-3), 187-189. https://www.sciencedirect.com/science/article/pii/S0014579301024607?via%3Dihub
102. Klimisch, H.-J., & Hellwig, J. (1995). Studies on the prenatal toxicity of 3-methyl-1-butanol and 2-methyl-1-propanol in rats and rabbits following inhalation exposure. Toxicological Sciences, 27(1), 77-89. https://doi.org/https://doi.org/10.1093/toxsci/27.1.77
103. Kong, W.-L., Wang, Y.-H., & Wu, X.-Q. (2021). Enhanced iron uptake in plants by volatile emissions of Rahnella aquatilis JZ-GX1. Frontiers in Plant Science, 12, 704000. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362888/pdf/fpls-12-704000.pdf
104. Kong, X., Tian, H., Yu, Q., Zhang, F., Wang, R., Gao, S., Xu, W., Liu, J., Shani, E., & Fu, C. (2018). PHB3 maintains root stem cell niche identity through ROS-responsive AP2/ERF transcription factors in Arabidopsis. Cell Reports, 22(5), 1350-1363.
105. Korpi, A., Järnberg, J., & Pasanen, A. L. (2009). Microbial volatile organic compounds. Critical Reviews in Toxicology, 39(2), 139-193. https://doi.org/10.1080/10408440802291497
106. Kozlowski, T. T. (1984). Plant Responses to Flooding of Soil. BioScience, 34(3), 162–167. https://doi.org/10.2307/1309751
107. Kumar, A. S., Lakshmanan, V., Caplan, J. L., Powell, D., Czymmek, K. J., Levia, D. F., &Bais, H. P. (2012). Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant Journal, 72(4), 694–706. https://doi.org/10.1111/j.1365-313X.2012.05116.x
108. Kwak, J. M., Mori, I. C., Pei, Z.-M., Leonhardt, N., Torres, M. A., Dangl, J. L., Bloom, R. E., Bodde, S., Jones, J. D., & Schroeder, J. I. (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. The EMBO Journal, 22(11), 2623-2633. https://doi.org/https://doi.org/10.1093/emboj/cdg277
109. Lawson, T., & Matthews, J. (2020). Guard cell metabolism and stomatal function. Annual Review of Plant Biology, 71, 273-302. https://doi.org/https://doi.org/10.1146/annurev-arplant-050718-100251
110. Ledger, T., Rojas, S., Timmermann, T., Pinedo, I., Poupin, M. J., Garrido, T., Richter, P., Tamayo, J., & Donoso, R. (2016). Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Frontiers in Microbiology, 7, 1838.
111. Lee, S., Hung, R., Schink, A., Mauro, J., & Bennett, J. W. (2014). Arabidopsis thaliana for testing the phytotoxicity of volatile organic compounds. Plant Growth Regulation, 74(2), 177-186. https://doi.org/10.1007/s10725-014-9909-9
112. Lee, Hung, R., Yin, G., Klich, M. A., Grimm, C., &Bennett, J. W. (2016). Arabidopsis thaliana as bioindicator of fungal VOCs in indoor air. Mycobiology, 44(3), 162–170. https://doi.org/10.5941/MYCO.2016.44.3.162
113. Lee, S. C., Lan, W., Buchanan, B. B., & Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences, 106(50), 21419-21424. https://doi.org/https://doi.org/10.1073/pnas.0910601106
114. Lee, S., Behringer, G., Hung, R., & Bennett, J. (2019). Effects of fungal volatile organic compounds on Arabidopsis thaliana growth and gene expression. Fungal Ecology, 37, 1-9. https://doi.org/10.1016/j.funeco.2018.08.004
115. Lee, Seonghee, Rojas, C. M., Ishiga, Y., Pandey, S., &Mysore, K. S. (2013). Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens. PLoS ONE, 8(12), 1–17. https://doi.org/10.1371/journal.pone.0082445
116. Lee, Y., Kim, Y. J., Kim, M.-h., & Kwak, J. M. (2016). MAPK Cascades in Guard Cell Signal Transduction. 7(February), 1-8. https://doi.org/10.3389/fpls.2016.00080
117. Leon-Reyes, A., Du, Y., Koornneef, A., Proietti, S., Körbes, A. P., Memelink, J., Pieterse, C. M., & Ritsema, T. (2010). Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Molecular Plant-Microbe Interactions, 23(2), 187-197.
118. Li, G., & Yen, Y. (2008). Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Science, 48(5), 1888-1896.
119. Li, L. L., Li, M., Yu, L., Zhou, Z., Liang, X., Liu, Z., Cai, G., Gao, L., Zhang, X., Wang, Y. Y. Y., Chen, S., Zhou, J. M., Prodhan, M. Y., Munemasa, S., Nahar, M. N. E. N., Nakamura, Y., Murata, Y., Seidl-Adams, I., Richter, A., …He, S. Y. (2016). Acetoin and 2,3-butanediol from Bacillus amyloliquefaciens induce stomatal closure in Arabidopsis thaliana and Nicotiana benthamiana. Plant Physiology, 7(1), 5625–5635. https://doi.org/10.1093/jxb/ery326
120. Li, L., Li, M., Yu, L., Zhou, Z., Liang, X., Liu, Z., Cai, G., Gao, L., Zhang, X., Wang, Y., Chen, S., &Zhou, J. M. (2014). The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host and Microbe, 15(3), 329–338. https://doi.org/10.1016/j.chom.2014.02.009
121. Li, S., Harley, P. C., & Niinemets, U. (2017). Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris. Plant Cell Environ, 40(9), 1984-2003. https://doi.org/10.1111/pce.13003
122. Li, T., Jia, K.-P., Lian, H.-L., Yang, X., Li, L., & Yang, H.-Q. (2014). Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochemical and Biophysical Research Communications, 454(1), 78-83.
123. Li, Y., Xu, S., Wang, Z., He, L., Xu, K., &Wang, G. (2018). Glucose triggers stomatal closure mediated by basal signaling through HXK1 and PYR/RCAR receptors in Arabidopsis. Journal of Experimental Botany, 69(7), 1471–1484. https://doi.org/10.1093/jxb/ery024
124. Li, Z., Zhang, Y., Ren, J., Jia, F., Zeng, H., Li, G., & Yang, X. (2022). Ethylene‐responsive factor ERF114 mediates fungal pathogen effector PevD1‐induced disease resistance in Arabidopsis thaliana. Molecular Plant Pathology, 23(6), 819-831. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104250/pdf/MPP-23-819.pdf
125. Lin, P.-A., Chen, Y., Ponce, G., Acevedo, F. E., Lynch, J. P., Anderson, C. T., Ali, J. G., & Felton, G. W. (2022). Stomata-mediated interactions between plants, herbivores, and the environment. Trends in Plant Science, 27(3), 287-300. https://doi.org/:https://doi.org/10.1016/j.tplants.2021.08.017
126. Liu, J., Zhang, W., Long, S., & Zhao, C. (2021). Maintenance of cell wall integrity under high salinity. International Journal of Molecular Sciences, 22(6), 1-19. https://doi.org/10.3390/ijms22063260
127. Liu, S., & Wang, R. (2020). Induction of salt tolerance in Arabidopsis thaliana by volatiles from Bacillus amyloliquefaciens FZB42 via the jasmonic acid signaling pathway. Frontiers in Microbiology, 11, 562934. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688926/pdf/fmicb-11-562934.pdf
128. Liu, Y., & He, C. (2016). Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. Plant Cell Reports, 35, 995-1007. https://doi.org/https://doi.org/10.1007/s00299-016-1950-x
129. Liu, Y., & He, C. (2017). A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biology, 11, 192-204. https://doi.org/https://doi.org/10.1016/j.redox.2016.12.009
130. Long, F. L., & Clements, F. E. (1934). the Method of Collodion Films for Stomata. American Journal of Botany, 21(1), 7-17. https://doi.org/10.1002/j.1537-2197.1934.tb08925.x
131. López-Gresa, M. P., Payá, C., Ozáez, M., Rodrigo, I., Conejero, V., Klee, H., Bellés, J. M., & Lisón, P. (2018). A New Role For Green Leaf Volatile Esters in Tomato Stomatal Defense Against Pseudomonas syringe pv. tomato. Frontiers in Plant Science, 9, 1855-1855. https://doi.org/10.3389/fpls.2018.01855
132. Lorenzo, O., Piqueras, R., Sánchez-Serrano, J. J., & Solano, R. (2003). ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 15(1), 165-178. https://doi.org/10.1105/tpc.007468
133. Loreto, F., & Schnitzler, J.-P. (2010). Abiotic stresses and induced BVOCs. Trends in Plant Science, 15(3), 154-166.
134. Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L., &He, P. (2010). A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 496–501. https://doi.org/10.1073/pnas.0909705107
135. Ludwików, A., Kierzek, D., Gallois, P., Zeef, L., & Sadowski, J. (2009). Gene expression profiling of ozone-treated Arabidopsis abi1td insertional mutant: protein phosphatase 2C ABI1 modulates biosynthesis ratio of ABA and ethylene. Planta, 230, 1003-1017. https://doi.org/https://doi.org/10.1007/s00425-009-1001-8
136. Lv, S., Zhang, Y., Li, C., Liu, Z., Yang, N., Pan, L., Wu, J., Wang, J., Yang, J., & Lv, Y. (2018). Strigolactone‐triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid‐independent manner. New Phytologist, 217(1), 290-304.
137. Ma, M., Cen, W., Li, R., Wang, S., &Luo, J. (2020). The molecular regulatory pathways and metabolic adaptation in the seed germination and early seedling growth of rice in response to low o2 stress. Plants, 9(10), 1–14. https://doi.org/10.3390/plants9101363
138. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., & Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 324(5930), 1064-1068. https://doi.org/10.1126/science.1172408
139. Macho, A. P., Boutrot, F., Rathjen, J. P., &Zipfel, C. (2012). ASPARTATE OXIDASE plays an important role in Arabidopsis stomatal immunity. Plant Physiology, 159(4), 1845–1856. https://doi.org/10.1104/pp.112.199810
140. Manners, J. M., Penninckx, I. A., Vermaere, K., Kazan, K., Brown, R. L., Morgan, A., Maclean, D. J., Curtis, M. D., Cammue, B. P., & Broekaert, W. F. (1998). The promoter of the plant defensin gene PDF1. 2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Molecular Biology, 38, 1071-1080. https://doi.org/10.1111/nph.14813
141. Mansfield, T., & Majernik, O. (1970). Can stomata play a part in protecting plants against air pollutants? Environmental Pollution (1970), 1(2), 149-154. https://doi.org/https://doi.org/10.1016/0013-9327(70)90015-7
142. Maleki, F. A., Seidl‐Adams, I., Fahimi, A., Peiffer, M. L., Kersch‐Becker, M. F., Felton, G. W., & Tumlinson, J. H. (2024). Stomatal closure prevents xylem transport of green leaf volatiles and impairs their systemic function in plants. Plant, Cell & Environment, 47(1), 122-139.
143. Marilley, L., & Casey, M. G. (2004). Flavours of cheese products: metabolic pathways, analytical tools and identification of producing strains. International Journal of Food Microbiology, 90(2), 139-159. https://doi.org/https://doi.org/10.1016/S0168-1605(03)00304-0
144. Matsui, K. (2016). A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds. Current Opinion in Plant Biology, 32, 24-30. https://doi.org/10.1016/j.pbi.2016.05.005
145. Mauch-Mani, B., &Mauch, F. (2005). The role of abscisic acid in plant-pathogen interactions. Current Opinion in Plant Biology, 8(4), 409–414. https://doi.org/10.1016/j.pbi.2005.05.015
146. Mauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense priming: an adaptive part of induced resistance. Annual Review of Plant Biology, 68, 485-512.
147. McConn, M., Creelman, R. A., Bell, E., Mullet, J. E., & Browse, J. (1997). Jasmonate is essential for insect defense in Arabidopsis. Proceedings of the National Academy of Sciences, 94(10), 5473-5477. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC24703/pdf/pq005473.pdf
148. Mehrnia, M., Balazadeh, S., Zanor, M.-I., & Mueller-Roeber, B. (2013). EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis. Plant Physiology, 162(2), 842-857. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668074/pdf/842.pdf
149. Meldau, D. G., Meldau, S., Hoang, L. H., Underberg, S., Wünsche, H., &Baldwin, I. T. (2013). Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell, 25(7), 2731–2747. https://doi.org/10.1105/tpc.113.114744
150. Melotto, M., Underwood, W., Koczan, J., Nomura, K., & He, S. Y. (2006). Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell, 126(5), 969-980. https://doi.org/10.1016/j.cell.2006.06.054
151. Melotto, M., Underwood, W., & He, S. Y. (2008). Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol., 46, 101-122.
152. Melotto, M., Underwood, W., Koczan, J., Nomura, K., &He, S. Y. (2006). Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell, 126(5), 969–980. https://doi.org/10.1016/j.cell.2006.06.054
153. Melotto, M., Zhang, L., Oblessuc, P. R., &He, S. Y. (2017). Stomatal defense a decade later. Plant Physiology, 174(2), 561–571. https://doi.org/10.1104/pp.16.01853
154. Memelink, J. (2009). Regulation of gene expression by jasmonate hormones. Phytochemistry, 70(13-14), 1560-1570.
155. Merilo, E., Laanemets, K., Hu, H., Xue, S., Jakobson, L., Tulva, I., Gonzalez-Guzman, M., Rodriguez, P. L., Schroeder, J. I., & Broschè, M. (2013). PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation. Plant Physiology, 162(3), 1652-1668. https://doi.org/https://doi.org/10.1104/pp.113.220608
156. Mersmann, S., Bourdais, G., Rietz, S., & Robatzek, S. (2010). Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiology, 154(1), 391-400. https://doi.org/https://doi.org/10.1104/pp.110.154567
157. Mhamdi, A., & Van Breusegem, F. (2018). Reactive oxygen species in plant development. Development, 145(15), dev164376. https://doi.org/https://doi.org/10.1242/dev.164376
158. Miles, G. P., Samuel, M. A., Zhang, Y., & Ellis, B. E. (2005). RNA interference-based (RNAi) suppression of AtMPK6, an Arabidopsis mitogen-activated protein kinase, results in hypersensitivity to ozone and misregulation of AtMPK3. Environmental Pollution, 138(2), 230-237. https://doi.org/https://doi.org/10.1016/j.envpol.2005.04.017
159. Miller, G., Schlauch, K., Tam, R., Cortes, D., Torres, M. A., Shulaev, V., Dangl, J. L., & Mittler, R. (2009). The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science signaling, 2(84), ra45-ra45. https://doi.org/https://doi.org/10.1126/scisignal.2000448
160. Mittler, R., &Blumwald, E. (2015). The roles of ROS and ABA in systemic acquired acclimation. Plant Cell, 27(1), 64–70. https://doi.org/10.1105/tpc.114.133090
161. Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V. B., Vandepoele, K., Gollery, M., Shulaev, V., &VanBreusegem, F. (2011). ROS signaling: The new wave? Trends in Plant Science, 16(6), 300–309. https://doi.org/10.1016/j.tplants.2011.03.007
162. Monaghan, J., &Zipfel, C. (2012). Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology, 15(4), 349–357. https://doi.org/10.1016/j.pbi.2012.05.006
163. Montillet, J.-L., Leonhardt, N., Mondy, S., Tranchimand, S., Rumeau, D., Boudsocq, M., Garcia, A. V., Douki, T., Bigeard, J., & Lauriere, C. (2013). An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biology, 11(3), e1001513. https://doi.org/https://doi.org/10.1371/journal.pbio.1001513
164. Morales, J., Kadota, Y., Zipfel, C., Molina, A., & Torres, M.-A. (2016). The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity. Journal of Experimental Botany, 67(6), 1663-1676. https://doi.org/https://doi.org/10.1093/jxb/erv558
165. Mori, I. C., Murata, Y., Yang, Y., Munemasa, S., Wang, Y. F., Andreoli, S., Tiriac, H., Alonso, J. M., Harper, J. F., Ecker, J. R., Kwak, J. M., &Schroeder, J. I. (2006). CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+- permeable channels and stomatal closure. PLoS Biology, 4(10), 1749–1762. https://doi.org/10.1371/journal.pbio.0040327
166. Movahedi, M., Zoulias, N., Casson, S. A., Sun, P., Liang, Y.-K., Hetherington, A. M., Gray, J. E., & Chater, C. C. (2021). Stomatal responses to carbon dioxide and light require abscisic acid catabolism in Arabidopsis. Interface Focus, 11(2), 20200036. https://doi.org/https://doi.org/10.1098/rsfs.2020.0036
167. Munemasa, S., Hauser, F., Park, J., Waadt, R., Brandt, B., &Schroeder, J. I. (2015). Mechanisms of abscisic acid-mediated control of stomatal aperture. Current Opinion in Plant Biology, 28, 154–162. https://doi.org/10.1016/j.pbi.2015.10.010
168. Munemasa, S., Oda, K., Watanabe-Sugimoto, M., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2007). The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiology, 143(3), 1398-1407. DOI: 10.1104/pp.106.091298
169. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
170. Murata, Y., Mori, I. C., & Munemasa, S. (2015). Diverse stomatal signaling and the signal integration mechanism. Annual Review of Plant Biology, 66, 369-392. https://doi.org/10.1146/annurev-arplant-043014-114707
171. Murata, Y., Pei, Z. M., Mori, I. C., & Schroeder, J. (2002). Erratum: Abscisic acid activation of plasma membrane ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell, 14(1), 287-287. https://doi.org/10.1105/tpc.cor210
172. Muria-Gonzalez, M. J., Yeng, Y., Breen, S., Mead, O., Wang, C., Chooi, Y.-H., Barrow, R. A., & Solomon, P. S. (2020). Volatile molecules secreted by the wheat pathogen Parastagonospora nodorum are involved in development and phytotoxicity. Frontiers in Microbiology, 11, 466. https://doi.org/https://doi.org/10.3389/fmicb.2020.00466
173. Mustilli, A. C., Merlot, S., Vavasseur, A., Fenzi, F., &Giraudat, J. (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 14(12), 3089–3099. https://doi.org/10.1105/tpc.007906
174. Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boller, T., & Jones, J. D. (2004). The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiology, 135(2), 1113-1128. https://doi.org/https://doi.org/10.1104/pp.103.036749
175. Niu, D. D., Liu, H. X., Jiang, C. H., Wang, Y. P., Wang, Q. Y., Jin, H. L., & Guo, J. H. (2011). The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Molecular Plant-Microbe Interactions, 24(5), 533-542. https://doi.org/10.1094/mpmi-09-10-0213
176. Norbäck, D., & Cai, G.-H. (2020). Microbial Agents in the Indoor Environment: Associations with Health. In Indoor Environmental Quality and Health Risk toward Healthier Environment for All (pp. 179-198). https://doi.org/10.1007/978-981-32-9182-9_9
177. Novaković, L., Guo, T., Bacic, A., Sampathkumar, A., & Johnson, K. L. (2018). Hitting the wall—Sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants, 7(4), 89. https://doi.org/https://doi.org/10.3390/plants7040089
178. Novaković, L., Guo, T., Bacic, A., Sampathkumar, A., &Johnson, K. L. (2018). Hitting the wall—sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. In Plants (Vol. 7, Issue 4, p. 89). MDPI AG. https://doi.org/10.3390/plants7040089
179. Nowak, D. J., Hirabayashi, S., Bodine, A., & Greenfield, E. (2014). Tree and forest effects on air quality and human health in the United States. Environmental Pollution, 193, 119-129. https://doi.org/https://doi.org/10.1016/j.envpol.2014.05.028
180. Nürnberger, T., Brunner, F., Kemmerling, B., &Piater, L. (2004). Innate immunity in plants and animals: Striking similarities and obvious differences. Immunological Reviews, 198, 249–266. https://doi.org/10.1111/j.0105-2896.2004.0119.x
181. Ooi, L., Matsuura, T., Munemasa, S., Murata, Y., Katsuhara, M., Hirayama, T., & Mori, I. C. (2019). The mechanism of SO2‐induced stomatal closure differs from O3 and CO2 responses and is mediated by nonapoptotic cell death in guard cells. Plant, Cell & Environment, 42(2), 437-447. https://doi.org/https://doi.org/10.1111/pce.13406
182. Panchal, S., & Melotto, M. (2017). Stomate-based defense and environmental cues. Plant Signaling & Behavior, 12(9), e1362517-e1362517. https://doi.org/10.1080/15592324.2017.1362517
183. Pandey, V. C., & Bauddh, K. (2018). Phytomanagement of polluted sites: market opportunities in sustainable phytoremediation. Elsevier.
184. Pang, Q., Zhang, T., Zhang, A., Lin, C., Kong, W., & Chen, S. (2020). Proteomics and phosphoproteomics revealed molecular networks of stomatal immune responses. Planta, 252(4), 1-17. https://doi.org/https://doi.org/10.1007/s00425-020-03474-3
185. Park, Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.-f. F. T. f. F., Alfred, S. E., Bonetta, D., Finkelstein, R., Provart, N. J., Desveaux, D., Rodriguez, P. L., McCourt, P., Zhu, J.-K. J. K. J.-K., Schroeder, J. I., . . . Cutler, S. R. (2009). Abscisic Acid Inhibits Type 2C. Science, 324(May), 1068-1069. http://www.sciencemag.org/cgi/doi/10.1126/science.1173041
186. Park, S. H., Kim, S., &Hahn, J. S. (2014). Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Applied Microbiology and Biotechnology, 98(21), 9139–9147. https://doi.org/10.1007/s00253-014-6081-0
187. Park., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T. F. T. -f. F., Alfred, S. E., Bonetta, D., Finkelstein, R., Provart, N. J., Desveaux, D., Rodriguez, P. L., McCourt, P., Zhu, J.-K. J.-K. J.-K., Schroeder, J. I., …Cutler, S. R. (2009). Abscisic Acid Inhibits Type 2C. Science, 324(May), 1068–1069. http://www.sciencemag.org/cgi/doi/10.1126/science.1173041
188. Pei, Z.-M., Murata, Y., Benning, G., Thomine, S., Klüsener, B., Allen, G. J., Grill, E., & Schroeder, J. I. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 406(6797), 731-734. https://www.nature.com/articles/35021067.pdf
189. Pellegrini, E., Trivellini, A., Cotrozzi, L., Vernieri, P., & Nali, C. (2016). Involvement of phytohormones in plant responses to ozone. Plant hormones under challenging environmental factors, 215-245.
190. Phukan, U. J., Jeena, G. S., Tripathi, V., & Shukla, R. K. (2017). Regulation of Apetala2/Ethylene response factors in plants. Frontiers in Plant Science, 8(February), 1-18. https://doi.org/10.3389/fpls.2017.00150
191. Pieterse, M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Wees, S. C. M. V., & Bakker, P. A. H. M. (2014). Induced Systemic Resistance by Beneficial Microbes. https://doi.org/10.1146/annurev-phyto-082712-102340
192. Pitzschke, A., Schikora, A., & Hirt, H. (2009). MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology, 12(4), 421-426. https://doi.org/https://doi.org/10.1016/j.pbi.2009.06.008
193. Qi, J., Wang, J., Gong, Z., &Zhou, J. M. (2017). Apoplastic ROS signaling in plant immunity. Current Opinion in Plant Biology, 38, 92–100. https://doi.org/10.1016/j.pbi.2017.04.022
194. Qu, S., Zhang, X., Song, Y., Lin, J., & Shan, X. (2017). THESEUS1 positively modulates plant defense responses against Botrytis cinerea through GUANINE EXCHANGE FACTOR4 signaling. Journal of Integrative Plant Biology, 59(11), 797-804. https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jipb.12565?download=true
195. Ravindra, K., & Mor, S. (2022). Phytoremediation potential of indoor plants in reducing air pollutants. Frontiers in Sustainable Cities, 4, 1039710. https://doi.org/https://doi.org/10.3389/frsc.2022.1039710
196. Robles, L. M., Wampole, J. S., Christians, M. J., & Larsen, P. B. (2007). Arabidopsis enhanced ethylene response 4 encodes an EIN3-interacting TFIID transcription factor required for proper ethylene response, including ERF1 induction. Journal of Experimental Botany, 58(10), 2627-2639. Russo, A., Pollastri, S., Ruocco, M., Monti, M. M., & Loreto, F. (2022). Volatile organic compounds in the interaction between plants and beneficial microorganisms. Journal of Plant Interactions, 17(1), 840-852.
197. Robert-Seilaniantz, A., Grant, M., & Jones, J. D. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49, 317-343.
198. Roux, M., & Zipfel, C. (2011). Receptor kinase interactions: Complexity of signalling. In Receptor-like Kinases in Plants: From Development to Defense (pp. 145-172). Springer.
199. Rui, Y., & Dinneny, J. R. (2020). A wall with integrity: surveillance and maintenance of the plant cell wall under stress. New Phytologist, 225(4), 1428-1439. https://doi.org/10.1111/nph.16166
200. Rui, Y., Xiao, C., Yi, H., Kandemir, B., Wang, J. Z., Puri, V. M., & Anderson, C. T. (2017). POLYGALACTURONASE INVOLVED IN EXPANSION3 functions in seedling development, rosette growth, and stomatal dynamics in Arabidopsis thaliana. The Plant Cell, 29(10), 2413-2432. https://doi.org/https://doi.org/10.1105/tpc.17.00568
201. Ryu, C. M. (2020). Bacterial Volatile Compounds as Mediators of Airborne Interactions. https://doi.org/10.1007/978-981-15-7293-7
202. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., &Paré, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134(3), 1017–1026. https://doi.org/10.1104/pp.103.026583
203. Ryu, C. M., Faragt, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W., &Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4927–4932. https://doi.org/10.1073/pnas.0730845100
204. Ryu, C.-m. (2020). Bacterial Volatile Compounds as Mediators of Airborne Interactions. https://doi.org/10.1007/978-981-15-7293-7
205. Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Paré, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences, 100(8), 4927-4932.
206. Sagi, M., & Fluhr, R. (2006). Production of Reactive Oxygen Species by Plant NADPH Oxidases. Plant Physiology, 141(2), 336-340. https://doi.org/10.1104/pp.106.078089
207. Saito, N., Munemasa, S., Nakamura, Y., Shimoishi, Y., Mori, I. C., & Murata, Y. (2008). Roles of RCN1, regulatory a subunit of protein phosphatase 2a, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant and Cell Physiology, 49(9), 1396-1401. https://doi.org/10.1093/pcp/pcn106
208. Sakata, N., Ishiga, T., Masuo, S., Hashimoto, Y., & Ishiga, Y. (2021). Coronatine contributes to Pseudomonas cannabina pv. alisalensis virulence by overcoming both stomatal and apoplastic defenses in dicot and monocot plants. Molecular Plant-Microbe Interactions, 34(7), 746-757. https://doi.org/https://doi.org/10.1101/2020.08.19.256685
209. Sato, H., Takasaki, H., Takahashi, F., Suzuki, T., Iuchi, S., Mitsuda, N., Ohme-Takagi, M., Ikeda, M., Seo, M., & Yamaguchi-Shinozaki, K. (2018). Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress. Proceedings of the National Academy of Sciences, 115(47), E11178-E11187. https://doi.org/https://doi.org/10.1073/pnas.1811491115
210. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. https://doi.org/10.1038/nmeth.2089
211. Schroeder, J. I., Kwak, J. M., &Allen, G. J. (2001). Guard cell abscisic acid signalling and engineering drought hardiness in plants. In Nature (Vol. 410, Issue 6826, pp. 327–330). Nature Publishing Group. https://doi.org/10.1038/35066500
212. Schulz, S., &Dickschat, J. S. (2007). Bacterial volatiles: The smell of small organisms. Natural Product Reports, 24(4), 814–842. https://doi.org/10.1039/b507392h
213. Shiu, S.-H., Karlowski, W. M., Pan, R., Tzeng, Y.-H., Mayer, K. F., & Li, W.-H. (2004). Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. The Plant Cell, 16(5), 1220-1234. https://doi.org/https://doi.org/10.1105/tpc.020834
214. Sirichandra, C., Wasilewska, A., Vlad, F., Valon, C., Leung, J., Shpak, E. D., Mcabee, J. M., Nadeau, J. A., Meng, X., Chen, X., Mang, H., Liu, C., Yu, X., Gao, X., Torii, K. U., He, P., Shan, L., Melotto, M., Zhang, L., …He, S. Y. (2009). The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant Cell, 22(6), 984–996. https://doi.org/10.1104/pp.110.157016
215. Song, Y., Miao, Y., & Song, C. P. (2014). Behind the scenes: The roles of reactive oxygen species in guard cells. New Phytologist, 201(4), 1121-1140. https://doi.org/10.1111/nph.12565
216. Song, G. C., Jeon, J.-S., Sim, H.-J., Lee, S., Jung, J., Kim, S.-G., Moon, S. Y., & Ryu, C.-M. (2022). Dual functionality of natural mixtures of bacterial volatile compounds on plant growth. Journal of Experimental Botany, 73(2), 571-583.
217. Splivallo, R., Novero, M., Bertea, C. M., Bossi, S., & Bonfante, P. (2007). Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytologist, 175(3), 417-424. https://doi.org/10.1111/j.1469-8137.2007.02141.x
218. Spoel, S. H., &Dong, X. (2008). Making Sense of Hormone Crosstalk during Plant Immune Responses. Cell Host and Microbe, 3(6), 348–351. https://doi.org/10.1016/j.chom.2008.05.009
219. Staswick, P. E., & Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugate it to isoleucine in Arabidopsis. Plant Cell, 16(8), 2117-2127. https://doi.org/10.1105/tpc.104.023549
220. Staswick, P. E., Tiryaki, I., & Rowe, M. L. (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell, 14(6), 1405-1415. https://doi.org/10.1105/tpc.000885
221. Su, J., Zhang, M., Zhang, L., Sun, T., Liu, Y., Lukowitz, W., Xu, J., & Zhang, S. (2017). Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell, 29(3), 526-542. https://doi.org/10.1105/tpc.16.00577
222. Suhita, D., Raghavendra, A. S., Kwak, J. M., & Vavasseur, A. (2004). Cytoplasmic Alkalization Precedes Reactive Oxygen Species Production during Methyl Jasmonate-and Abscisic Acid-Induced Stomatal Closure 1. https://doi.org/10.1104/pp.103.032250
223. Suhita, D., Raghavendra, A. S., Kwak, J. M., &Vavasseur, A. (2004). Cytoplasmic Alkalization Precedes Reactive Oxygen Species Production during Methyl Jasmonate-and Abscisic Acid-Induced Stomatal Closure 1. https://doi.org/10.1104/pp.103.032250
224. Sussmilch, F. C., Brodribb, T. J., & McAdam, S. A. M. (2017). Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. Journal of Experimental Botany, 68(11), 2913-2918. https://doi.org/10.1093/jxb/erx124
225. Syed-Ab-Rahman, S. F., Carvalhais, L. C., Chua, E. T., Chung, F. Y., Moyle, P. M., Eltanahy, E. G., & Schenk, P. M. (2019). Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth. Science of the Total Environment, 692, 267-280. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.07.061
226. Tahir, H. A. S., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., Colman, M. V., & Gao, X. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in Microbiology, 8(FEB), 1-11. https://doi.org/10.3389/fmicb.2017.00171
227. Tanaka, K., & Heil, M. (2021). Damage-associated molecular patterns (DAMPs) in plant innate immunity: applying the danger model and evolutionary perspectives. Annual Review of Phytopathology, 59, 53-75.
228. Thor, K., Jiang, S., Michard, E., George, J., Scherzer, S., Huang, S., Dindas, J., Derbyshire, P., Leitão, N., & DeFalco, T. A. (2020). The calcium-permeable channel OSCA1. 3 regulates plant stomatal immunity. Nature, 585(7826), 569-573. https://doi.org/https://doi.org/10.1038/s41586-020-2954-9
229. Tian, W., Hou, C., Ren, Z., Wang, C., Zhao, F., Dahlbeck, D., Hu, S., Zhang, L., Niu, Q., Li, L., Staskawicz, B. J., &Luan, S. (2019). A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature, 572(7767), 131–135. https://doi.org/10.1038/s41586-019-1413-y
230. Tischer, S. V., Wunschel, C., Papacek, M., Kleigrewe, K., Hofmann, T., Christmann, A., & Grill, E. (2017). Combinatorial interaction network of abscisic acid receptors and coreceptors from Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 114(38), 10280-10285. https://doi.org/https://doi.org/10.1073/pnas.1706593114
231. Torres, M. A., & Dangl, J. L. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology, 8(4), 397-403. https://doi.org/https://doi.org/10.1016/j.pbi.2005.05.014
232. Torres, M. A., Dangl, J. L., & Jones, J. D. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences, 99(1), 517-522. https://www.pnas.org/doi/pdf/10.1073/pnas.012452499
233. Treesubsuntorn, C., & Thiravetyan, P. (2012). Removal of benzene from indoor air by Dracaena sanderiana: Effect of wax and stomata. Atmospheric Environment, 57, 317-321. https://doi.org/https://doi.org/10.1016/j.atmosenv.2012.04.016
234. Truong, T.-T. T., Chiu, C.-C., Chen, J.-Y., Su, P.-Y., Nguyen, T.-P., Trinh, N.-N., Mimura, T., Lee, R.-H., Chang, C.-H., & Huang, H.-J. (2023). Uncovering molecular mechanisms involved in microbial volatile compounds-induced stomatal closure in Arabidopsis thaliana. Plant Molecular Biology, 113(4), 143-155.
235. Truong, T.-T. T., Chiu, C.-C., Su, P.-Y., Chen, J.-Y., Nguyen, T.-P., Ohme-Takagi, M., Lee, R.-H., Cheng, W.-H., & Huang, H.-J. (2024). Signaling pathways involved in microbial indoor air pollutant 3-methyl-1-butanol in the induction of stomatal closure in Arabidopsis. Environmental Science and Pollution Research, 1-13.
236. Vahisalu, T., Puzõrjova, I., Brosché, M., Valk, E., Lepiku, M., Moldau, H., Pechter, P., Wang, Y. S., Lindgren, O., & Salojärvi, J. (2010). Ozone‐triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. The Plant Journal, 62(3), 442-453. https://doi.org/https://doi.org/10.1111/j.1365-313X.2010.04159.x
237. Vainonen, J. P., & Kangasjärvi, J. (2015). Plant signalling in acute ozone exposure. Plant, Cell & Environment, 38(2), 240-252. https://doi.org/https://doi.org/10.1111/pce.12273
238. Van der Does, D., Boutrot, F., Engelsdorf, T., Rhodes, J., McKenna, J. F., Vernhettes, S., Koevoets, I., Tintor, N., Veerabagu, M., Miedes, E., Segonzac, C., Roux, M., Breda, A. S., Hardtke, C. S., Molina, A., Rep, M., Testerink, C., Mouille, G., Höfte, H., . . . Zipfel, C. (2017). The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genetics, 13(6), 1-27. https://doi.org/10.1371/journal.pgen.1006832
239. Van Loon, L., Bakker, P., & Pieterse, C. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453-483. https://doi.org/https://doi.org/10.1146/annurev.phyto.36.1.453
240. Vardoulakis, S., Giagloglou, E., Steinle, S., Davis, A., Sleeuwenhoek, A., Galea, K. S., Dixon, K., & Crawford, J. O. (2020). Indoor exposure to selected air pollutants in the home environment: A systematic review. International journal of environmental research and public health, 17(23), 8972. https://doi.org/10.3390/ijerph17238972
241. Vogt, M., Brüsseler, C., Ooyen, J.van, Bott, M., &Marienhagen, J. (2016). Production of 2-methyl-1-butanol and 3-methyl-1-butanol in engineered Corynebacterium glutamicum. Metabolic Engineering, 38(July), 436–445. https://doi.org/10.1016/j.ymben.2016.10.007
242. Wan, X. R., & Li, L. (2006). Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. Biochemical and Biophysical Research Communications, 347(4), 1030-1038. https://doi.org/10.1016/j.bbrc.2006.07.0260
243. Wang, C., Lu, W., He, X., Wang, F., Zhou, Y., Guo, X., & Guo, X. (2016). The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant and Cell Physiology The Plant Journal 57(8), 1629-1642. https://pubmed.ncbi.nlm.nih.gov/27335349/
244. Wang, H. Q., Sun, L. P., Wang, L. X., Fang, X. W., Li, Z. Q., Zhang, F. F., Hu, X., Qi, C., & He, J. M. (2020). Ethylene mediates salicylic-acid-induced stomatal closure by controlling reactive oxygen species and nitric oxide production in Arabidopsis. Plant Science, 294, 110464-110464. https://doi.org/10.1016/j.plantsci.2020.110464
245. Wang, H., Ngwenyama, N., Liu, Y., Walker, J. C., & Zhang, S. (2007). Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. The Plant Cell, 19(1), 63-73. https://doi.org/https://doi.org/10.1105/tpc.106.048298
246. Wang, J., Janson, C., Gislason, T., Gunnbjörnsdottir, M., Jogi, R., Orru, H., & Norbäck, D. (2023). Volatile organic compounds (VOC) in homes associated with asthma and lung function among adults in Northern Europe. Environmental Pollution, 321, 121103. https://doi.org/https://doi.org/10.1016/j.envpol.2023.121103
247. Wang, J., Janson, C., Gislason, T., Gunnbjörnsdottir, M., Jogi, R., Orru, H., & Norbäck, D. (2023). Volatile organic compounds (VOC) in homes associated with asthma and lung function among adults in Northern Europe. Environmental Pollution, 321, 121103. https://doi.org/https://doi.org/10.1016/j.envpol.2023.121103
248. Wang, L., & Erb, M. (2022). Volatile uptake , transport , perception , and signaling shape a plant ’ s nose. 0(July), 1-8. https://doi.org/https://doi.org/10.1042/ebc20210092
249. Wang, Z., & Gou, X. (2022). The first line of defense: Receptor-like protein kinase-mediated stomatal immunity. International Journal of Molecular Sciences, 23(1). https://doi.org/10.3390/ijms23010343
250. Weisskopf, L., Schulz, S., &Garbeva, P. (2021). Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nature Reviews Microbiology. https://doi.org/10.1038/s41579-020-00508-1
251. Wenke, K., Wanke, D., Kilian, J., Berendzen, K., Harter, K., & Piechulla, B. (2012). Volatiles of two growth‐inhibiting rhizobacteria commonly engage AtWRKY18 function. The Plant Journal, 70(3), 445-459.
252. Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C. M., van Loon, L. C., & Bakker, P. A. (2012). Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology, 102(4), 403-412.
253. Wesevich, A., Sutton, G., Ruffin, F., Park, L. P., Fouts, D. E., Fowler, V. G., &Thaden, J. T. (2020). Newly named klebsiella aerogenes (formerly enterobacter aerogenes) is associated with poor clinical outcomes relative to other enterobacter species in patients with bloodstream infection. Journal of Clinical Microbiology, 58(9). https://doi.org/10.1128/JCM.00582-20
254. Weyens, N., Thijs, S., Popek, R., Witters, N., Przybysz, A., Espenshade, J., Gawronska, H., Vangronsveld, J., & Gawronski, S. W. (2015). The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. International Journal of Molecular Sciences, 16(10), 25576-25604. https://mdpi-res.com/d_attachment/ijms/ijms-16-25576/article_deploy/ijms-16-25576.pdf?version=1445861508
255. Wheatley, R. E. (2002). The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 81(1–4), 357–364. https://doi.org/10.1023/A:1020592802234
256. Wolf, S. (2017). Plant cell wall signalling and receptor-like kinases. Biochemical Journal, 474(4), 471-492. https://doi.org/10.1042/bcj20160238
257. Wu, H.-C., Huang, Y.-C., Stracovsky, L., & Jinn, T.-L. (2017). Pectin methylesterase is required for guard cell function in response to heat. Plant Signaling & Behavior, 12(6), e1338227.
258. Wu, L., Chen, X., Ren, H., Zhang, Z., Zhang, H., Wang, J., Wang, X.-C., & Huang, R. (2007). ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco. Planta, 226, 815-825. https://link.springer.com/article/10.1007/s00425-007-0528-9
259. Wu, L., Huang, Z., Li, X., Ma, L., Gu, Q., Wu, H., Liu, J., Borriss, R., Wu, Z., & Gao, X. (2018a). Stomatal closure and SA-, JA/ET-signaling pathways are essential for Bacillus amyloliquefaciens FZB42 to restrict leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana. Frontiers in Microbiology, 9(APR), 1-8. https://doi.org/10.3389/fmicb.2018.00847
260. Wu, L., Li, X., Ma, L., Borriss, R., Wu, Z., & Gao, X. (2018b). Acetoin and 2,3-butanediol from Bacillus amyloliquefaciens induce stomatal closure in Arabidopsis thaliana and Nicotiana benthamiana. Journal of Experimental Botany, 69(22), 5625-5635. https://doi.org/10.1093/jxb/ery326
261. Wu, L., Zhang, Z., Zhang, H., Wang, X.-C., & Huang, R. (2008). Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiology, 148(4), 1953-1963. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593663/pdf/pp1481953.pdf
262. Wu, P.-H., Ho, Y.-L., Ho, T.-S., Chang, C.-H., Ye, J.-C., Wang, C.-H., Sung, H.-M., Huang, H.-J., & Liu, C.-C. (2019). Microbial volatile compounds-induced cytotoxicity in the yeast Saccharomyces cerevisiae: The role of MAPK signaling and proteasome regulatory pathway. Chemosphere, 233, 786-795. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.05.293
263. Xing, Y., Jia, W., & Zhang, J. (2008). AtMKK1 mediates ABA‐induced CAT1 expression and H2O2 production via AtMPK6‐coupled signaling in Arabidopsis. The Plant Journal, 54(3), 440-451.https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-313X.2008.03433.x?download=true
264. Xu, J., Li, Y., Wang, Y., Liu, H., Lei, L., Yang, H., Liu, G., & Ren, D. (2008). Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. Journal of Biological Chemistry, 283(40), 26996-27006.
265. Yalage Don, S., Schmidtke, L., Gambetta, J., & Steel, C. (2020). Aureobasidium pullulans volatilome identified by a novel, quantitative approach employing SPME-GC-MS, suppressed Botrytis cinerea and Alternaria alternata in vitro. Scientific Reports, 10(1), 4498.
266. Yang, D.-L., Zhang, Z.-N., Liu, H., Yang, Z.-Y., Liu, M.-M., Zheng, Q.-X., Chen, W., & Xiang, P. (2022). Indoor air pollution and human ocular diseases: Associated contaminants and underlying pathological mechanisms. Chemosphere, 137037. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.137037
267. Yang, Z., Tian, L., Latoszek-Green, M., Brown, D., & Wu, K. (2005). Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Molecular Biology The Plant Journal 58(4), 585-596. https://doi.org/10.1007/s11103-005-7294-5
268. Yin, Y., Adachi, Y., Nakamura, Y., Munemasa, S., Mori, I. C., & Murata, Y. (2016). Involvement of OST1 protein kinase and PYR/PYL/RCAR receptors in methyl jasmonate-induced stomatal closure in Arabidopsis guard cells. Plant and Cell Physiology, 57(8), 1779-1790. https://doi.org/10.1093/pcp/pcw102
269. Yin, Y., Adachi, Y., Ye, W., Hayashi, M., Nakamura, Y., Kinoshita, T., Mori, I. C., &Murata, Y. (2013). Difference in abscisic acid perception mechanisms between closure induction and opening inhibition of stomata. Plant Physiology, 163(2), 600–610. https://doi.org/10.1104/pp.113.223826
270. Yoneya, K., & Takabayashi, J. (2014). Plant–plant communication mediated by airborne signals: ecological and plant physiological perspectives. Plant Biotechnology, 31(5), 409-416.
271. Yoo, M. H., Kwon, Y. J., Son, K.-C., & Kays, S. J. (2006). Efficacy of indoor plants for the removal of single and mixed volatile organic pollutants and physiological effects of the volatiles on the plants. Journal of the American Society for Horticultural Science, 131(4), 452-458. https://doi.org/https://doi.org/10.21273/JASHS.131.4.452
272. Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F., &Shinozaki, K. (2006). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. Journal of Biological Chemistry, 281(8), 5310–5318. https://doi.org/10.1074/jbc.M509820200
273. Yu, H., Chen, X., Hong, Y. Y., Wang, Y., Xu, P., Ke, S. D., Liu, H. Y., Zhu, J. K., Oliver, D. J., & Xiang, C. B. (2008). Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell, 20(4), 1134-1151. https://doi.org/10.1105/tpc.108.058263
274. Yuan, M., Ngou, B. P. M., Ding, P., & Xin, X. F. (2021). PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology, 62, 102030-102030.
275. Zhang, L., Li, Z., Quan, R., Li, G., Wang, R., & Huang, R. (2011). An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. Plant Physiology, 157(2), 854-865.
276. Zhang, T. Y., Li, Z. Q., Zhao, Y. D., Shen, W. J., Chen, M. S., Gao, H. Q., Ge, X. M., Wang, H. Q., Li, X., & He, J. M. (2021). Ethylene‐induced stomatal closure is mediated via MKK1/3–MPK3/6 cascade to EIN2 and EIN3. Journal of Integrative Plant Biology, 63(7), 1324-1340. https://doi.org/https://doi.org/10.1111/jipb.13083
277. Zhao, G., Yin, G., Inamdar, A., Luo, J., Zhang, N., Yang, I., Buckley, B., & Bennett, J. (2017). Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity
278. Zheng, X., Kang, S., Jing, Y., Ren, Z., Li, L., Zhou, J. M., Berkowitz, G., Shi, J., Fu, A., Lan, W., Zhao, F., & Luan, S. (2018). Danger-associated peptides close stomata by OST1-independent activation of anion channels in guard cells. Plant Cell, 30(5), 1132-1146. https://doi.org/10.1105/tpc.17.00701
279. Zeng, W., & He, S. Y. (2010). A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiology, 153(3), 1188-1198. https://doi.org/https://doi.org/10.1104/pp.110.157016
280. Zipfel, C., & Oldroyd, G. E. (2017). Plant signalling in symbiosis and immunity. Nature, 543(7645), 328-336.
281. Zhou, J., Sun, A., & Xing, D. (2013). Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum. Journal of Experimental Botany, 64(11), 3261-3272. https://doi.org/10.1093/jxb/ert166
282. Zhou, J. M., & Zhang, Y. (2020). Plant Immunity: Danger Perception and Signaling. In (Vol. 181, pp. 978-989): Cell Press.
283. Zhu, F., Xi, D.-H., Deng, X.-G., Peng, X.-J., Tang, H., Chen, Y.-J., Jian, W., Feng, H., & Lin, H.-H. (2014). The chilli veinal mottle virus regulates expression of the tobacco mosaic virus resistance gene N and jasmonic acid/ethylene signaling is essential for systemic resistance against chilli veinal mottle virus in tobacco. Plant Molecular Biology Reporter, 32, 382-394.
校內:2028-12-31公開