| 研究生: |
黃子勳 Huang, Tz-Shiun |
|---|---|
| 論文名稱: |
(Bi2Te3/Bi2Se3)多層膜與合金的特性研究 Study of Bi2Te3/Bi2Se3 Multilayer and Alloy Grown on Glass |
| 指導教授: |
黃榮俊
Huang, Jung-Chun-Andrew |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 拓樸絕緣體 、合金 、多層膜 、熱電效應 |
| 外文關鍵詞: | Topological insulator, alloy, multi-layer, thermoelectric-effect |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過分子束磊晶將碲化鉍/硒化鉍成長在無晶相之鈉玻璃基板,由X光繞射(XRD)看出碲化鉍/硒化鉍及其合金和多層膜仍保有一定C軸取向,並透過拉曼光譜鑑定晶格鍵結狀況及聲子震盪模式。再來,將碲化鉍/硒化鉍及其合金和多層膜透過霍爾量測確認材料的傳輸性質,發現在鈉玻璃基板上成長的碲化鉍、碲化鉍/硒化鉍合金呈現P型傳輸,而硒化鉍、碲化鉍/硒化鉍多層膜呈現N型傳輸,並得到碲化鉍、硒化鉍載子濃度提高至1020 cm-3,再利用Van der pauw法得到電阻率;透過Seebeck effect確認材料Seebeck係數的變化,發現合金部分有較高的Seebeck係數,多層膜在四層膜達到最高的Seebeck係數。再經過熱導率的量測,最後合金部分得到碲化鉍呈現最高熱電優值,多層膜部分在四層膜得到最高熱電優值。
Bi2Te3/Bi2Se3 multi-layers and alloys grow on non-crystal-phase glass by molecular beam epitaxy(MBE). X-ray diffraction tell us that multi-layers and alloys on glass still have C-orientation. Raman spectra show multi-layers' and alloy's vibrational modes. Then, we use Hall-effect to recognize major carrier, and obtain p-type Bi2Te3 and Bi2TexSe3-x alloy; n-type Bi2Se3 and multi-layers. Electrical resistivity variation is observed by Van der pauw method. We also observe Bi2TexSe3-x alloy have higher Seebeck coefficient in alloy and so do four-layer in multi-layer. Finally, measuring thermal conductivity is required, futher to get Figure of merit(ZT) for thermoelectic device. Bi2Te3 have best ZT in alloy; Four have best ZT in multilayer.
[1]K. M. F. Shahil, M. Z. Hossain, D. Teweldebrhan, and A. A. Balandin, Appl. Phys. Lett. 96, 153103 (2010)
[2] L. Chen et al. / Materials Letters 82 (2012) 112–115
[3]Yimin Zhao, Robert W. Hughes, Zixue Su, Wuzong Zhou, and Duncan H.
Gregory, Angew. Chem. Int. Ed. 2011, 50, 10397 –10401
[4]國立成功大學周昱恆 (2013)
[5]國立成功大學陳品卉 (2013)
[6]國立成功大學陳威寧 (2013)
[7] D. O. Scanlon*, P. D. C. King*, R. P. Singh, A. de la Torre, S. McKeown
Walker, G. Balakrishnan, F. Baumberger, and C. R. A. Catlow. Advanced
Materials, vol. 24, iss. 16, pp 2154-2158 (2012)
[8] Shanyu Wang, Wenjie Xie, Han Li, Xinfeng Tang. Intermetallics 19 (2011)
1024-1031
[9] Shanyu Wang, Gangjian Tan, Wenjie Xie, Gang Zheng, Han Li, Jihui Yang and
Xinfeng Tang. J. Mater. Chem., 2012, 22, 20943
[10] K. M. F. Shahil, M. Z. Hossain, D. Teweldebrhan, and A. A. Balandin.
APPLIED PHYSICS LETTERS 96, 153103 (2010)
[11] Ajay Soni, Zhao Yanyuan, Yu Ligen, Michael Khor Khiam Aik,*, Mildred S.
Dresselhaus, and Qihua XiongNano Lett. 2012, 12, 1203−1209
[12] Yong Wang, Faxian Xiu, Lina Cheng, Liang He, Murong Lang, Jianshi Tang,
Xufeng Kou, Xinxin Yu, Xiaowei Jiang, Zhigang Chen, Jin Zou, and Kang L.
Wang. Nano Lett. 2012, 12, 1170−1175
[13] J.C.A. Huang, Ph.D. Thesis, Univ. of Illinois
[14]B. Heinrich, J.A.C. Bland, Ultrathin Magnetic Structure I, Springer-Verlag,
New York (1994)
[15] B. Dodson, Phys. Rev. B, 36, 6288 (1987)
[16] W. Wulfhekel, F. Zavaliche, R. Hertel, S. Bodea, G. Steierl, G. Liu, and
J. Kirschner, Phys. Rev. B 68,144416(2003)
[17] P.J. Berlowitz, J.W. He, and D.W. Goodman, Surf. Sci. 231, 315 (1990)
[18] H.J. Elmers and J. Hauschild, Surf. Sci. 320, 134 (1994)
[19]E.Bauer, Appl. Surf. Sci. 11/12,479(1982)
[20]Soshin Chikazumi and Stanley H. Charap “Physics of Magnetism”(1972)
[21] G. JEFFREY SNYDER* AND ERIC S. TOBERER , nature materials , VOL 7 ,
FEBRUARY (2008)