簡易檢索 / 詳目顯示

研究生: 蔡佳宏
Tsai, Chia-Hung
論文名稱: 以電流阻絕層改善氮化銦鎵/氮化鎵多層量子井發光二極體特性之研究
Improvement of the Characteristics of InGaN/GaN MQW LED with Current Blocking Layer
指導教授: 洪茂峰
Houng, Mau-Phon
王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 78
中文關鍵詞: 氮化鎵發光二極體電流阻絕層
外文關鍵詞: light emitting diode, current blocking layer, GaN
相關次數: 點閱:47下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   藉由製程上的進展以改善發光二極體的性能已經相當引人注意。在本實驗我們的重點之一是放在改善電流分佈的一致性來達到較佳的發光二極體特性。

      受限於電洞濃度的問題,p型傳導的氮化鎵不容易得到。一般用來活化電洞濃度的方法是在高溫下熱回火。本實驗我們把重點放在回火之前,於p型氮化鎵表面先沉積一層鎳膜來幫助活化。根據電特性、電洞濃度及回火溫度的考量,我們認為加上一層鎳膜後再於600度下熱回火是較佳的選擇。

      CBL(電流阻絕層)是解決發光二極體電流擁擠現象的其中一種有效方法。我們可以藉由在氮化鎵發光二極體結構中加上電流阻絕層的方式來引導電流走向。在本實驗我們採用離子佈植的方式來形成電流阻絕層。我們發現採用這個方法,發光二極體的電特性夠變得較好,可靠度可望因此增加。

      Improving LED’s performance by the progress of fabrication procedures has attracted much attention. One point we stress is the improvement of the uniform current spreading to achieve better characteristics of LED in this experiment.

      Restricted to the problem of hole concentration, the p-type conduction GaN is not easily obtained. The general methods to activate hole concentration is annealing at high temperature. We put emphasis on the deposition of Ni film on p-type GaN before annealing to help activate p-type GaN in this experiment. According as the electrical characters, hole concentration, and annealing temperature, we think p-type GaN with Ni film annealed at 600 oC is the better choice.

      CBL (current blocking layer) is one of the useful methods to solve the current crowing of LED effectively. We can guide the current path by adding CBL in GaN LED structure. In this experiment, we adopt the method of ion implantation to form CBL. We find the electrical characteristic is better, and the reliability is expected to be improved.

    摘要…………………………………………………… .I Abstract………………………………………………..III 誌謝…………………………………………………….V Contents……………………………………………….VI Table captions…………………………………………IX Figure captions………………………………………....X Chapter 1 Introduction………………………………..1 1.1 Background……………………………………………………...…1 1.2 Organization……………………………………………………….3 Chapter 2 P-type GaN Activation with Ni film………4 2.1 P-type GaN activation……………………………………………..4 2.1.1. LEEBI treatment……………………………………………………..5 2.1.2 Minority-carrier injection…………………………………………...5 2.1.3 Photo-enhanced activation………………………………………….5 2.1.4 Microwave treatment………………………………………………...6 2.1.5 Laser-induced activation…………………………………………….6 2.1.6 Thermal activation in O2 ambient………………………………….7 2.2 Introduction of p-type GaN activated with Ni film………………..7 2.3 The mechanism of Ni activation………………………………...…8 2.3.1 Experiments ………………………………………………………..…8 2.3.2 Surface of p-type GaN after annealing……………………………9 2.3.3 Hole concentration………………………………………………….10 2.4 SIMS profiles of H concentration………………………………...11 2.4.1 Introduction of SIMS………………………………………………..11 2.4.2 H concentration……………………………………………………..11 2.5 The electrical characteristics of p-type GaN annealed with Ni film at different temperatures………………………………………….12 2.5.1 Contact resistance between the metal and semiconductor…….13 2.5.2 Introduction of TLM ……………………………………………….13 2.5.3 Experiments …………………………………………………………14 2.5.4 I-V curve……………………………………………………………..14 2.6 Photoluminescene ………………………………………………..16 2.6.1 Experiments and results……………...…………………………….17 Chapter 3 Fabrication of InGaN/GaN MQW LED …………………………………………………...18 3.1 InGaN/GaN MQW LED wafer …………………………………..18 3.2 Fabrication procedures of LED ……...…………………………..18 3.2.1 Wafer cleaning………………………………………………………19 3.2.2 Mg doped p-type GaN activation…………………………………19 3.2.3 ICP etching…………………………………………………….…….19 3.2.4 TCL deposition……………………………………………….……..20 3.2.5 Metal deposition on n-type GaN …………………………………21 3.2.6 Metal deposition on p-type GaN …………………………………21 3.3 N-type GaN ohmic contact……………………………………….21 3.4 P-type GaN ohmic contact………………………………………..22 3.5 Equipments……………………………………………………….23 3.5.1 ICP etching system…………………………….…………………...23 Chapter 4 Improvement of Performance for LED with CBL…………………………………………...…24 4.1 Introduction of CBL………………………………………...……24 4.1.1 Current spreading of GaN LED…………………………………..25 4.2 Ion implantation to GaN………………………………………….27 4.2.1 O+ ion implantation in p-type GaN……………………………….29 4.2.2 Discussions………………………………………………………….30 4.3 Ion implantation to form CBL in LED…………………………...30 4.3.1 Experiments………………………………………………………….30 4.3.2 Flowchart of processes……………………………………………..32 4.4 Results and discussions………………………….……………….35 Chapter 5 Conclusion and Future Work……………36 5.1 Conclusion………………………………………………………..36 5.2 Future work………………………………………………………38 References……………………………………………………..39

    [1] D.B. Eason, Z. Yu, W.C. Hughes, C. Boney, J.W. Cook, Jr., and J.F.
    Schetzina, “High-brightness light-emitting diodes grown by MBE on ZnSe substrates”, IEEE 1, 31 (1994)
    [2] H. AMANO, S. KAMIYAMA, and I. AKASAKI,“Impact of low-temperature buffer layers on nitride-based optoelectronics”, IEEE 90, 6 (2002)
    [3] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai,“Hole Compensation Mechanism of P-Type GaN Films”, Jpn. J. Appl. Phys. 31, 1258 (1992)
    [4] S. Nakamura and G. Fasol, The Blue Laser Diode, Berlin, Germany:
    Springer-Verlag, pp. 216–219, (1997)
    [5] J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S.J. Chang, and Y. K. Su, “”IEEE Photon. Technol. Lett., vol. 14, pp. 450–452, (2002)
    [6] X. Guo, J. W. Graff, and E. F. Schubert, in IEDM Technol. Dig.,
    IEDM-99 (1999)
    [7] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin,
    W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors”, IEEE 15,1 (2003)
    [8] H. AMANO, S. KAMIYAMA, and I. AKASAKI,“Impact of
    low-temperature buffer layers on nitride-based optoelectronics”, IEEE 90, 6 (2002)
    [9] Y. Ohba and A. Hatano,“H-Atom Incorporation in Mg-Doped GaN Grown by Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys., Part 2 33, L1367 (1994)
    [10] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films”, Jpn. J. Appl.
    Phys., Part 2 31, L139 (1992)
    [11] D.H. Youn, M. Lachab, M. Hao, T. Sugahara, H. Takenaka, Y. Naoi, S. Sakai, “Investigation on the P-Type Activation Mechanism in Mg-doped GaN Films Grown by Metalorganic Chemical Vapor Deposition ”, Jpn. J. Appl. Phys. 38 ,631 (1999)
    [12] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI) ”, Jpn. J. Appl. Phys., Part 2 28, L2112 (1989)
    [13] M. Miyachi, T. Tanaka, Y. Kimura, and Hiroyuki Ota, “The activation of Mg in GaN by annealing with minority-carrier injection”, Appl. Phys. Lett. 72, 1101 (1998)
    [14] Y. Kamiura, Y. Yamashita, and S. Nakamura, “Photo-Enhanced Activation of Hydrogen-Passivated Magnesium in P-Type GaN Films”, Jpn. J. Appl. Phys. 37, L970 (1998)
    [15] S. J. Chang, Y. K. Su, T. L. Tsai, C. Y. Chang, C. L. Chiang, C. S.
    Chang, T. P. Chen, and K. H. Huang, “Acceptor activation of Mg-doped GaN by microwave treatment”, Appl. Phys. Lett. 78, 312 (2001)
    [16] Y. C. Cheng, C. C. Liao, S. W. Feng, C. C. Yang, Y. S. Lin, K. J. Ma, C. C. Chou, C. M. Lee, and J. I. Chyi, “Laser-Induced Activation of
    p-Type GaN with the Second Harmonics of a Nd:YAG Laser”, Jpn. J. Appl. Phys. 40, 2143 (2001)
    [17] B. A. Hull, S. E. Mohney, H. S. Venugopalan, and J. C. Ramer, “Influence of oxygen on the activation of p-type GaN”, Appl. Phys.
    Lett. 76, 2271 (2000)
    [18] T. C. Wen, S. C. Lee, W. -I Lee, T. Y. Chen, S. H. Chan, and J. S.
    Tsang, “Activation of p-Type GaN in a Pure Oxygen Ambient ”, Jpn. J. Appl. Phys. 40, L495 (2001)
    [19] I. Waki, H. Fujioka, and M. Oshima, H. Miki and M. Okuyama,“Mechanism for low temperature activation of Mg-doped GaN with
    Ni catalysts”, J. Appl. Phys., 90,6500 (2001)
    [20] S.M. Wang, C.H. Chen, S.J. Chang, Y.K. Sua, B.R. Huang,
    Materials & Engineering (2004)
    [21] I. Waki, H. Fujioka, and M. Oshima,“Low-temperature activation
    of Mg-doped GaN using Ni films”, Appl. Phys., 78,2899 (2001)
    [22] I. Waki, H. Fujioka, M. Oshima, H. Miki and M. Okuyama, 234,
    459-462, Journal of Crystal Growth (2002)
    [23] D. youn, M. Lachab, M. Hao, T. Sugahara, H. Takenaka, Y. Naoi,
    and S. Sakai, Jpn. Part 1 38,631 (1999)
    [24] V. M. Bermudez, R. Kaplan, M. A. Kahn, and J. N. Kuznia, Phys
    Rev.B 48,2436 (1993)
    [25] H. S. Venugopalan, S. E. Mohney, B. P. Luther, S. D. Wolter, “Interfacial reactions between nickel thin films and GaN”and J. M.
    Redwing, J. APPl. Phys., 82,650 (1997)
    [26] J. Neugebauer and C. G. Van de Walle, Phys. Rev. B 50,8067
    (1997)
    [27] Neuse C. J., Tietjen J. J., Gannon J. J., and Gossenberger H. F., J.
    Electrochem SOC, Solid State Science 116,248 (1969)
    [28] Meng-Chyi Wu; Jyh-Feng Lin; Ming-Jiuun Jou; Chuan-Ming
    Chang; Biing-Jye Lee; “High reliability of AlGaInP LED's with efficient transparent contacts for spatially uniform light emission”, Electron Device Letters, IEEE Volume 16, Issue 11 (1995)
    [29] Aliyu, Y.H.; Morgan, D.V.; Thomas, H.; Bland, S.W.; “AlGaInP
    LEDs using reactive thermally evaporated transparent conducting indium tin oxide (ITO)”, Electronics Letters 31, 19, Page(s):1691 - 1692 (1995)
    [30] Matin, M.A.; Jezierski, A.F.; Bashar, S.A.; Lacklison, D.E.; Benson,
    T.M.; Cheng, T.S.; Roberts, J.S.; Sale, T.E.; Orton, J.W.; Foxon,
    C.T.; Rezazadeh, A.A.; “Optically transparent indium-tin-oxide (ITO) ohmic contacts in the fabrication of vertical-cavity surface-emitting lasers”, Electronics Letters 30, 4, Page(s):318-320 (1994)
    [31] Z. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and
    H. Morkoc, “Very low resistance multilayer Ohmic contact to n-GaN”, Appl. Phys. Lett. 68, 1672 (1996)
    [32] S. J. Cai, R. Li, Y. L. Chen, L. Wong, W. G. Wu, S. G. Thomas, and
    K. L. Wang, Electron Lett. 34, 2354 (1998)
    [33] Abhishek Motayed, Ravi Bathe, Mark C. Wood, Ousmane S. Diouf, R. D. Vispute, and S. Noor Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN”, J. Appl. Phys. 93, 1087 (2003)
    [34] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal
    GaN”, Appl. Phys. Lett. 62, 1786 (1993)
    [35] B. P. Luther, S. E. Mohney, J. M. Delucca, and R. F. Karlicek, Jr., J.
    Electron. Mater. 27, 196 (1998)
    [36] S. Ruvimov, Z. L. Weber, J. Washburn, K. J. Duxstad, E. E. Haller,
    Z.F. Fan, S. N. Mohammad, W. Kim, A. E. Botchkarev, and H.
    Morkoc, “Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n-GaN”, Appl. Phys. Lett. 69, 1556 (1996)
    [37] B. P. Luther, S. E. Mohney, T. N. Jackson, M. A. Khan, Q. Chen, and J. W. Yang, “Investigation of the mechanism for Ohmic contact
    formation in Al and Ti/Al contacts to n-type GaN”, Appl. Phys. Lett.
    70, 57 (1997)
    [38] G. Mohs, B. Fluegel, H. Giessen, H. Tajalli, and N. Peyghambarian, “Photoluminescence decay dynamics in an InGaN/AlGaN/GaN
    double-heterostructure blue-light-emitting diode”, Appl. Phys. Lett. 67, 1515 (1995)
    [39] H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J.
    Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces”, J. Appl. Phys. 81, 1315 (1997)
    [40] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N.
    Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN”, J. Appl. Phys. 83, 3172 (1998)
    [41] S. Nakamura, M. Senoh, S. Nagaham, N. Iwasa, T. Matsushuta, H.
    Kiyoku, and Y. Sugimoto, “Characteristics of InGaN multi-quantum-well-structure laser diodes”, Appl. Phys. Lett. 68, 3269 (1996)
    [42] D J. King, L. Zhang, J. C. Raner, S. D. Hersee, and L. F. Lester, Mat. Res. Soc. Symp. Proc. 468, 421 (1997)
    [43] T. Kim, J. Khim, S. Chae, and T. Kim, Mat. Res. Soc. Symp. Proc.
    468, 427 (1997)
    [44] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment”, Appl. Phys. Lett. 73, 2953 (1998)
    [45] J. S. Jang, H. G. Kim, K. H. Park, C. S. Um, I. K. Han, S. H. Kim,
    H. K. Jang, and S. J. Park, Mat. Res. Soc. Symp. Proc. 482, 1053 (1998)
    [46] J. S. Jang, I. S. Chang, H. K. Kim, T.Y. Seong, S. Lee, and S. J.
    Park, “Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN”, Appl. Phys. Lett. 74, 70 (1999)
    [47] Ho Won Jang, Ki Hong Kim, Jong Kyu Kim, Soon-Won Hwang,
    Jung Ja Yang, Kang Jae Lee, Sung-Jin Son, and Jong-Lam Lee“Low-resistance and thermally stable ohmic contact on p-type GaN
    using Pd/Ni metallization”, Appl. Phys. Lett. 79, 1822 (2001)
    [48] Chen-Fu Chu, C. C. Yu, Y. K. Wang, J. Y. Tsai, F. I. Lai, and S. C.
    Wang, “Low-resistance ohmic contacts on p-type GaN using Ni/Pd/Au metallization”, Appl. Phys. Lett. 77, 3423 (2000)
    [49] L. C. Chen, F. R. Chen, and J. J. Kai, Li Chang, J. K. Ho, C. S.
    Jong, Chien C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, Appl. Phys. Lett. 86, 7 (1999)
    [50] J. K. Ho, Charng-Shyang Jong, C. C. Chiu, C. N. Huang, C. Y.
    Chen, and K. K. Shin, Appl. Phys. Lett. 74, 9 (1999)
    [51] J. K. Ho, Charng-Shyang Jong, C. C. Chiu, C. N. Huang, and K.
    K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, Appl. Phys. Lett. 86, 8 (1999)
    [52] Hyunsoo Kim, Seong-Ju Park, and Hyunsang Hwang, IEEE
    Electron Devices, IEEE Transactions on Volume 48, Issue 6, Page(s):1065 - 1069 (2001)
    [53] Chul Huh, Hyun-Soo Kim, Sang-Woo Kim, Ji-Myon Lee,
    Dong-Joon Kim, In-Hwan Lee, and Seong-Ju Park, “InGaN/GaN multiple quantum well light-emitting diodes with highly transparent Pt thin film contact on p-GaN”, J. Appl. Phys. 87,4464 (2000)
    [54] X. A. Cao and S. J. Pearton, G. T. Dang, A. P. Zhang, F. Ren, and
    R. G. Wilson and J. M. Van Hove, “Creation of high resistivity GaN by implantation of Ti, O, Fe, or Cr”, J. Appl. Phys. 87, 1091(2000).
    [55] M. Rubin, N. Newman, J. S. Chan, T. C. Fu, and J. T. Ross,
    “p-type gallium nitride by reactive ion-beam molecular beam epitaxy with ion
    implantation, diffusion, or coevaporation of Mg”, Appl. Phys. Lett. 64, 64 (1994)
    [56] C. Wang and R. F. Davis, “Deposition of highly resistive, undoped, and p-type, magnesium-doped gallium nitride films by modified gas source molecular beam epitaxy”, Appl. Phys. Lett. 63, 990 (1993)
    [57] R. J. Molnar and T. D. Moustakas, “Growth of gallium nitride by
    electron-cyclotron resonance plasma-assisted molecular-beam epitaxy: The role of charged species”, J. Appl. Phys. 76, 4587 (1994)
    [58] C. R. Abernathy, J. D. MacKenzie, S. J. Pearton, and W. S. Hobson, “CCl4 doping of GaN grown by metalorganic molecular beam
    epitaxy”, Appl. Phys. Lett. 66, 1969 (1995)
    [59] J. I. Pankove and J. A. Hutchby, “Photoluminescence of
    ion-implanted GaN”, J. Appl. Phys. 47, 5387 (1976)
    [60] H. P. Maruska and J. J. Tiefjen, “THE PREPARATION AND
    PROPERTIES OF VAPOR-DEPOSITED SINGLE-CRYSTAL-LINE GaN”, Appl. Phys. Lett. 15, 327 (1969)
    [61] R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N.
    Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54 μm photoluminescence from Er-implanted GaN and AlN”, Appl. Phys. Lett. 65, 992 (1994)
    [62] R. G. Wilson, J. M. Zavada, C. R. Abernathy, and S. J. Pearton, “Thermal stability of implanted dopants in GaN”, Appl. Phys. Lett.
    66, 2238 (1995)
    [63] S. C. Binari, L. B. Rowland, W. Kruppa, G. Kelner, K. Doverspike, and D. K. Gaskill, Electron. Lett. 30, 1248 (1994)
    [64] S. J. Pearton, C. R. Abernathy, P. W. Wisk, W. S. Hobson, and F.
    Ren, “Reversible changes in doping of InGaAlN alloys induced by ion implantation or hydrogenation”, Appl. Phys. Lett. 63, 1143 (1993)
    [65] J. C. Zolper, S. J. Pearton, C. R. Abernathy, and C. B. Vartuli, “Nitrogen and fluorine ion implantation of in InxGa1-xN”, Appl.
    Phys. Lett. 66, 3042 (1995)
    [66] S. J. Pearton, C. B. Vartuli, J. C. Zolper, C. Yuan, and R. A. Stall,“Ion implantation doping and isolation of GaN”, Appl. Phys. Lett.
    67, 1435 (1995)
    [67] S. C. Binari, H. B. Dietrich, G. Keiner, L. B. Rowland, K.
    Doverspike, and D. K. Wickenden, “H, He and N implant isolation of n-type GaN”, J. Appl. Phys. 78, 3008 (1995)

    下載圖示 校內:2006-07-19公開
    校外:2009-07-19公開
    QR CODE