| 研究生: |
梁科研 Leong, Fo-in |
|---|---|
| 論文名稱: |
液晶光子晶體光纖之雙折射與色散性 Birefringents and Dispersions of Photonic Liquid Crystal Fibers |
| 指導教授: |
陳聯文
Chen, Lien-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 光子晶體光纖 、液晶 |
| 外文關鍵詞: | photonic crystal fibers, liquid crystals |
| 相關次數: | 點閱:71 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光子晶體光纖是以纖芯為中心,折射率在橫切面呈二維週期性排列的光子晶體結構。這種新型光纖有兩種傳播機制:全反射導向和光子能隙導向。文章中,使用平波面展開法和有限元素法分析光子晶體光纖和液晶光子晶體光纖的光學性質。
本文破壞光纖結構對稱性,提高了80%的雙折射性。以及,由此設計出高雙折射性光子晶體光纖感測器。可以發展成單頻光和動態量測。
液晶是一種能被電場和熱場控制的材料,含液晶的光子晶體光纖被稱為液晶光子晶體光纖。本文中,主要探討全反射導向和光子能隙導向的液晶光子晶體光纖,當向列型液晶光軸在不同方向時的雙折射性和色散性。以及,討論到液晶的非等向性對光子晶體光纖的影響。
當縱向非等向性時,雙折射性為零,其中,若為正單光軸材料時,非等向性越大,零色散點往低頻移動,若為負單光軸材料時,零色散點受影響不大。當橫向非等向性時,雙折射性不為零,零色散點受影響不大,不過,能量可能從另一方向的能隙缺口上損失。
最後,提出了雙導向性光纖,是一種在兩個偏振態上擁有不同傳播機制的光纖。根據雙導向性的特,我們設計了光開關和光偏振感測器。本文會在液晶光子晶體光纖在光電元件和光纖感測器等應用層面上造成深遠的影響。
Photonic crystal fibers (PCFs) are photonic crystal modes consisting of a two dimensional periodic refractive index structure around the core. The novel fibers guide the light by total internal refraction (TIR) or photonic bandgaps (PBG) effect. We investigate properties of the PCFs and the photonic liquid crystal fibers (PLCFs) numerically by using the plane wave expansion method and the finite element method.
By destroying the symmetry of fiber structure, we demonstrate that the birefringence is increased by 80%. The intensified birefringence allows us to design the high birefringent PCF sensors. Details are discussed and the monochromatic and dynamic measurements are demonstrated.
PLCFs are the photonic crystal fibers filled with liquid crystals, which are thermal and electrical tunable anisotropic material. In this thesis, we focus on studying the birefringence and dispersions of the PLCFs guided by TIR and PBG effects, when the optical axis of nematic PCs are in different directions. Moreover, the effects of the anisotropism of liquid crystals to PCFs are addressed.
When the optical axial of LCs is parallel to the propagation direction, the birefringence is zero. For a positive uniaxial medium, we find the zero dispersive points shift toward the lower frequency with an increasing anisotropism. On the other hand, the anisotropism has weak influence on zero dispersive points. When the optical axial of LCs is perpendicular to the propagation direction, the birefringence aren’t zero and the anisotropism has weak influence on zero dispersive points. But, the power may be lost at other directional band.
Finally, a bi-guidance fiber which has two different guiding mechanisms at two polarization modes is proposed. According to the properties of bi-guide, we can design the optical switch and optical polarization selector. The present research gives a physical insight into PLCFs and is crucial for optoelectronic devices and biosensors.
[1] E. Yablonovitch, “Inhibited spontaneous Emission in solid-state physics and electronics,” Physical Review Letters 58(20), 2059-2062(1987)
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters 58(23), 2486-2489(1987)
[3] E. Yablonovitch, T. J. Gmitter and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Physical Review Letters 67(17), 2295-2298(1991)
[4] J. C. Knight, T. A. Birks, P. St. J. Russell and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Optics Letters 21(19), 1547-1549(1996)
[5] J. C. Knight, J. Broeng, T. A. Birks and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476-1478(1998)
[6] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537-1539(1999)
[7] A. A. Maradudin and A.R. Mcgurn, “Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,” Journal of Modern Optics 41(2), 275-284(1994)
[8] X. P. Feng and Y. Arakawa, “Off-plane angle dependence of photonic band gap in a two-dimensional photonic crystal,” IEEE Journal of Quantum Electronics 32(3), 535-542(1996)
[9] T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” Journal of the Optical Society of America B 19(10), 2322-2330(2002)
[10] B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” Journal of the Optical Society of America B 19(10), 2331-2340(2002)
[11] M. Koshiba and K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photonics Technology Letters 13(12), 1313-1315(2001)
[12] K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE Journal of Quantum Electronics 38(7), 927-933(2002)
[13] V. Dangui, M. J. F. Digonnet and G. S. Kino, “A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers,” Optics Express 14(7) 2979-2992(2006)
[14] Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Optics Express 10(17), 853-864(2002)
[15] C. P. Yu and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Optics Express 12(25), 6165-6177(2004)
[16] J. Broeng, D. Mogilevstev, S. E. Barkou and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Optical Fiber Technology 5(3), 305-330(1999)
[17] P. Russell, “Photonic crystal fibers,” Science 299(5605), 358-362(2003)
[18] A. Bjarklev, J. Broeng and A. S. Bjarklev, Photonic crystal fibres, Kluwer Academic Publishers, Boston, 2003
[19] F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau and D. Felbacq, Foundations of photonic crystal fibres, World Scientific Publishing, London, 2005
[20] T. M. Monro, D. J. Richardson and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electronics Letters 35(14), 1188-1189(1999)
[21] Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Optical Engineering 41(1), 8-9(2002)
[22] Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Applied Optics 42(18), 3509-3515(2003)
[23] J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Measurement Science and Technology 15(6), 1120-1128(2004)
[24] V. P. Minkovitch, D. Monzón-Hernández, J. Villatoro and G. Badenes, “Microstructured optical fiber coated with thin films for gas and chemical sensing,” Optics Express 14(18), 8413-8417(2006)
[25] L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Optics Express 14(18), 8224-8230(2006)
[26] C. Zhang, G. Kai, Z. Wang, T. Sun, C. Wang, Y. Liu, J. Liu, W. Zhang, S. Yuan and X. Dong, “Design of tunable bandgap guidance in high-index filled microstructure fibers,” Journal of the Optical Society of America B 23(4), 782-786(2006)
[27] T. T. Alkesjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann. J. Broeng, J. Li, S. Gauza and S. T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Applied Optics 45(10), 2261-2264(2006)
[28] M. W. Haakestad, T. T. Alkesjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technology Letters 17(4), 819-821(2005)
[29] T. R. Woliński, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Measurement Science and Technology 17(5), 985-991(2006)
[30] T. R. Woliński, S. Ertman, P. Lesiak, A. W. Domański, A. Czapla, R. Dąbrowski, E. Nowinowski-Kruszelnicki and J. Wójcik, “Photonic liquid crystal fibers – a new challenge for fiber optics and liquid crystals photonics,” Opto-Electronics Review 14(4), 329-334(2006)
[31] P. D. Rasmussen, J. Lægsgaard and O. Bang, “Chromatic dispersion of liquid-crystal infiltrated capillary tubes and photonic crystal fibers,” Journal of the Optical Society of America B 23(10), 2241-2248(2006)
[32] K. A. Brzdąkiewicz, U. A. Laudyn, M. A. Karpierz, T. R. Woliński and J.Wójcik, “Linear and nonlinear properties of photonic crystal fibers filled with nematic liquid crystals,” Opto-Electronics Review 14(4), 287-292(2006)
[33] D. C. Zografopoulos, E. E. Kriezis and T. D. Tsiboukis, “Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance,” Optics Express 14(2), 914-925(2006)
[34] A. O. Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Optics Letters 25(18), 1325-1327(2000)
[35] K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka and M. Fujita, “Optical Properties of a low-loss polarization-maintaining photonic crystal fiber,” Optics Express 9(13), 676-680(2001)
[36] I. K. Hwang, Y. J. Lee and Y. H. Lee, “Birefringence induced by irregular structure in photonic crystal fiber,” Optics Express 11(22), 2799-2806(2003)
[37] M. S. Alam, K. Saitoh and M. Koshiba, “High group birefringence in air-core photonic bandgap fibers,” Optics Letters 30(8), 824-826(2005)
[38] D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Optics Express 12(19), 4490-4495(2004)
[39] S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, M. J. Bloemer, V. I. Beloglazov, N. B. Skibina, D. Chorvat Jr., D. Chorvat, M. Scalora and A. M. Zheltikov, “Experimental demonstration of a photonic-crystal-fiber optical diode,” Applied Physics B 78(5), 547-550(2004)
[40] K. M. Gundu, M. Keloesik, J. V. Moloney and K. S. Lee, “Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers,” Optics Express 14(15), 6870-6878(2006)
[41] J. Lægsgaard ,”Directional coupling in twin-core photonic bandgap fibers,” Optics Letters 30(24), 3281-3283(2005)
[42] M. Skorobogatiy, K. Saitoh and M. Koshiba, “Transverse lightwave circuits in microstructure optical fibers: resonator arrays,” Optics Express 14(4), 1439-1450(2006)
[43] N. J. Florous, K. Saitoh, T. Murao, M. Koshiba, M. Skorobogatiy “Non-proximity resonant tunneling in multi-core photonic band gap fibers: an efficient mechanism for engineering highly-selective ultra-narrow band pass splitters,” Optics Express 14(11), 4861-4872(2006)
[44] J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals: molding the flow of light, Princeton U. Press, Princeton, 1995
[45] C. Y. Liu and L. W. Chen “Tunable photonic-crystal waveguide Mach-Zehnder interferometer achieved by nematic liquid-crystal phase modulation,” Optics Express 12(12), 2616-2624(2004)