| 研究生: |
柯承佑 Ko, Chen-Yo |
|---|---|
| 論文名稱: |
電磁式低溫共燒陶瓷微泵之研製 Fabrication of a low temperature co-fired ceramics electromagnetic valveless micropump |
| 指導教授: |
王逸君
Wang, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 擴流器 、噴嘴 、低溫共燒陶瓷 、電磁式無閥微泵 |
| 外文關鍵詞: | diffuser, nozzle, low temperature co-fired ceramics, electromagnetic valveless micropump |
| 相關次數: | 點閱:120 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
低溫共燒陶瓷技術的優點包括:易於製作三維微結構,可將電子電路,流體微流道系統簡易地相結合。其性質可耐受嚴苛的溫度及化學環境,且製程快速、容易。本研究旨在以低溫共燒陶瓷為材料,研製高效能電磁式微泵。此微泵由兩個泵體所組成,靠入出口處各有一對矩形截面的擴流器/噴嘴。兩組平行排列的泵體目的在提高微泵的流量,並且搭配上電磁致動膜片。微泵致動腔的直徑為九毫米,而擴流器/噴嘴的頸部尺寸為零點三乘以零點三毫米、擴張角為十度。則微泵系統在五十赫茲的響應頻率下可達到每分鐘一百點九微升。
There are some advantages of low temperature co-fired ceramics(LTCC). First of all, it is easy to construct the three-dimensional micro-structure. Secondly, electronic circuits and microfluidics components can easily be integrated. Thirdly, the fabrication processes of LTCC is simple and fast, after sintering, the devices can stand severe temperatures and chemical environment. The main point of this research is to use low temperature co-fired ceramics material to fabricate a high performance electromagnetic micropump. The pump consists of two pump chambers, each with two flow rectifying diffuser/nozzle elements with rectangular cross sections, one at the inlet and one at the outlet. The pump chambers are arranged in parallel for high pump flow. Each pump has two electromagnetically vibrated diaphragms. The pump chamber diameter is 9 mm and the diffuser/nozzle element neck dimensions are 0.3 × 0.3 mm with diffuser angle of 10 °. The pump capacity of about 100.9 µl/min with the pump diaphragm vibration frequency set to the pump resonance frequency of 50 Hz.
[1] E. Stemme, G. Stemme, “A valveless diffuser/nozzle-based fluid pump,” Sensors and Actuators A: Physical, Vol. 39, 159-167 (1993).
[2] T. Gerlach, H.Wurmus, “Working principle and performance of the dynamic micropump,” Sensors and Actuators A: Physical, Vol. 50, 135-140 (1995).
[3] A. Olsson, G. Stemme, E. Stemme, “Micromachined diffuser/nozzle elements for valve-less pumps,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 378-383 (1996).
[4] A. Olsson, P. Enoksson, G. Stemme, E. Stemme, “ An improved valve-less pump fabricated using deep reactive ion etching,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 479-484 (1997).
[5] Y.-H. Lee, T. G. Kang, Y.-H. Cho, “Characterization of bi-directionally oscillating dynamic flow and frequency-dependent rectification performance of microdiffusers,” Proc. Micro Electro Mechanical Systems Workshop, pp. 403-408 (2000).
[6] J.-H. Kim, C. J. Kang, Y. S. Kim, “A disposable polydimethylsiloxane-based diffuser micropump actuated by piezoelectric-disc,” Microelectronic Engineering, Vol. 71(2), 119-124 (2004).
[7] C. Yamahata, C. Lotto, E. Al-Assaf, M. A. M. Gijs, “A PMMA valveless micropump using electromagnetic actuation,” Microfluid Nanofluid, Vol. 1, 197-207 (2005).
[8] A. Olsson, G. Stemme, and E. Stemme, “A valve-less planar fluid pump with two pump chambers,” Sensors and Actuators A: Physical, Vol. 46-47, 549-556 (1995).
[9] 林世航, “圓錐型微擴流器之暫態流場數值模擬,” 國立成功大學機械工程研究所碩士論文, 民國96年。
[10] 陳竑一, “圓錐型擴流器整流效率之實驗研究,” 國立成功大學機械工程研究所碩士論文, 民國97年。
[11] 郭啟偉, “電磁力驅動微型膜片泵的研究與實驗分析,” 廈門大學機械製造及其自動化研究所碩士論文 (2009).
[12] P. Hagedorn, A. DasGupta, Vibration and Waves in Continuous Mechanical Systems, Wiley, Chichester, pp. 231-234 (2007).
[13] 雷銀照, 電磁場(第二版), 高等教育出版社, 北京, pp. 130-132 (2010).
[14] M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, J. J. Santiago-Avilés, “Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST),” Sensors and Actuators A: Physical, Vol. 89(3), 222-241 (2001).
[15] Yoshihiko Imanaka, Multilayered low temperature cofired ceramics (LTCC) technology, Springer, New York, pp. 107, 146 (2004).