簡易檢索 / 詳目顯示

研究生: 柯承佑
Ko, Chen-Yo
論文名稱: 電磁式低溫共燒陶瓷微泵之研製
Fabrication of a low temperature co-fired ceramics electromagnetic valveless micropump
指導教授: 王逸君
Wang, Yi-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 70
中文關鍵詞: 擴流器噴嘴低溫共燒陶瓷電磁式無閥微泵
外文關鍵詞: diffuser, nozzle, low temperature co-fired ceramics, electromagnetic valveless micropump
相關次數: 點閱:120下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   低溫共燒陶瓷技術的優點包括:易於製作三維微結構,可將電子電路,流體微流道系統簡易地相結合。其性質可耐受嚴苛的溫度及化學環境,且製程快速、容易。本研究旨在以低溫共燒陶瓷為材料,研製高效能電磁式微泵。此微泵由兩個泵體所組成,靠入出口處各有一對矩形截面的擴流器/噴嘴。兩組平行排列的泵體目的在提高微泵的流量,並且搭配上電磁致動膜片。微泵致動腔的直徑為九毫米,而擴流器/噴嘴的頸部尺寸為零點三乘以零點三毫米、擴張角為十度。則微泵系統在五十赫茲的響應頻率下可達到每分鐘一百點九微升。

      There are some advantages of low temperature co-fired ceramics(LTCC). First of all, it is easy to construct the three-dimensional micro-structure. Secondly, electronic circuits and microfluidics components can easily be integrated. Thirdly, the fabrication processes of LTCC is simple and fast, after sintering, the devices can stand severe temperatures and chemical environment. The main point of this research is to use low temperature co-fired ceramics material to fabricate a high performance electromagnetic micropump. The pump consists of two pump chambers, each with two flow rectifying diffuser/nozzle elements with rectangular cross sections, one at the inlet and one at the outlet. The pump chambers are arranged in parallel for high pump flow. Each pump has two electromagnetically vibrated diaphragms. The pump chamber diameter is 9 mm and the diffuser/nozzle element neck dimensions are 0.3 × 0.3 mm with diffuser angle of 10 °. The pump capacity of about 100.9 µl/min with the pump diaphragm vibration frequency set to the pump resonance frequency of 50 Hz.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 VII 圖目錄 IX 符號說明 XIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機 7 第二章 微泵系統的整體設計 8 2-1 微泵組成 8 2-2 泵體設計 9 2-3 電磁致動器的設計 11 第三章 微泵系統的工作原理 13 3-1 無閥微泵工作原理概述 13 3-2 電磁致動器工作原理 14 3-3 膜片應力變形 22 第四章 微泵系統的模擬 26 4-1 COMSOL MULTIPHYSICS軟體簡介 26 4-2 磁場模擬 26 4-3 電磁力模擬 29 4-4 膜片變形模擬 30 第五章 微泵的製程 32 5-1 低溫共燒陶瓷材料 32 5-2 二氧化碳雷射加工 35 5-3 網版印刷 41 5-4 層壓 43 5-5 燒結 45 5-6 微泵的製作時間流程 47 第六章 微泵實驗架構與設備 53 6-1 實驗整體架構 53 6-2 功率放大器 54 6-3 雷射位移計 55 第七章 微泵系統的實驗與結果分析 59 7-1 膜片振幅量測 59 7-2 微泵流量測試 62 7-3 背壓測試 64 第八章 結論與未來展望 66 8-1. 結論 66 8-2. 未來展望 66 參考文獻 68 自述 70

    [1] E. Stemme, G. Stemme, “A valveless diffuser/nozzle-based fluid pump,” Sensors and Actuators A: Physical, Vol. 39, 159-167 (1993).
    [2] T. Gerlach, H.Wurmus, “Working principle and performance of the dynamic micropump,” Sensors and Actuators A: Physical, Vol. 50, 135-140 (1995).
    [3] A. Olsson, G. Stemme, E. Stemme, “Micromachined diffuser/nozzle elements for valve-less pumps,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 378-383 (1996).
    [4] A. Olsson, P. Enoksson, G. Stemme, E. Stemme, “ An improved valve-less pump fabricated using deep reactive ion etching,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 479-484 (1997).
    [5] Y.-H. Lee, T. G. Kang, Y.-H. Cho, “Characterization of bi-directionally oscillating dynamic flow and frequency-dependent rectification performance of microdiffusers,” Proc. Micro Electro Mechanical Systems Workshop, pp. 403-408 (2000).
    [6] J.-H. Kim, C. J. Kang, Y. S. Kim, “A disposable polydimethylsiloxane-based diffuser micropump actuated by piezoelectric-disc,” Microelectronic Engineering, Vol. 71(2), 119-124 (2004).
    [7]  C. Yamahata, C. Lotto, E. Al-Assaf, M. A. M. Gijs, “A PMMA valveless micropump using electromagnetic actuation,” Microfluid Nanofluid, Vol. 1, 197-207 (2005).
    [8] A. Olsson, G. Stemme, and E. Stemme, “A valve-less planar fluid pump with two pump chambers,” Sensors and Actuators A: Physical, Vol. 46-47, 549-556 (1995).
    [9] 林世航, “圓錐型微擴流器之暫態流場數值模擬,” 國立成功大學機械工程研究所碩士論文, 民國96年。
    [10] 陳竑一, “圓錐型擴流器整流效率之實驗研究,” 國立成功大學機械工程研究所碩士論文, 民國97年。
    [11] 郭啟偉, “電磁力驅動微型膜片泵的研究與實驗分析,” 廈門大學機械製造及其自動化研究所碩士論文 (2009).
    [12] P. Hagedorn, A. DasGupta, Vibration and Waves in Continuous Mechanical Systems, Wiley, Chichester, pp. 231-234 (2007).
    [13] 雷銀照, 電磁場(第二版), 高等教育出版社, 北京, pp. 130-132 (2010).
    [14] M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, J. J. Santiago-Avilés, “Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST),” Sensors and Actuators A: Physical, Vol. 89(3), 222-241 (2001).
    [15] Yoshihiko Imanaka, Multilayered low temperature cofired ceramics (LTCC) technology, Springer, New York, pp. 107, 146 (2004).

    下載圖示 校內:2015-08-19公開
    校外:2015-08-19公開
    QR CODE