| 研究生: |
謝尚儒 Hsieh, Shang-Ju |
|---|---|
| 論文名稱: |
以樹枝狀共聚物利用溶劑誘導相分離機制製備自組裝型態薄膜之研究 Preparation of Self-Assembling Matrix from Dendritic-Linear Copolymers Based on a Solvent-Induced Phase Separation Mechanism |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 197 |
| 中文關鍵詞: | 發散方式 、樹枝狀共聚物 、溶劑誘導相分離法 、秩序規則之自組裝排列薄膜 、分子拓印模板 、奈米薄膜複材 、CdS奈米粒子 、相容助劑 |
| 外文關鍵詞: | divergent method, dendritic-linear copolymers, solvent-induced phase separation, self-assembling matrices, ordered structures, molecular imprinting, nanocomposite membranes, dispersing agents |
| 相關次數: | 點閱:128 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著時代、科技的進步,科學研究、產業技術的發展都朝著將電子、光學、磁性裝置亦或是感測器微小化的目標前進。因此,如何廣泛且低成本地製備出具有微米級抑或是奈米級規則結構之材料是一個相當重要的課題。就目前的技術,大多是以光蝕刻、化學氣相沉積等方式大規模的製備有序規則結構的材料。然而,製備程序繁瑣以及製作成本高昂則是目前最需要克服的問題。因此,利用分子自組裝行為來製備規則結構材料便是最具潛力的製備方式。這是因為其製程較為單純,而且能利用材料分子本身的自組裝行為,快速地製備出具有規則排序的立體結構抑或是表面結構之材料。此外,隨著化學合成技術的快速發展,許多嶄新被製備合成出的特殊結構之聚合物分子都呈現著許多特殊的物理與化學性質;其中,樹枝狀巨分子更是由於其特殊結構與特性所造成的許多特異的性質而廣受注目。本研究的主要目的為利用樹枝狀共聚物的結構特異性與自組裝行為,經由單純的溶劑誘導相分離製程,製備出具有秩序規則排列之薄膜材料,寄望能廣泛的應用於各式的材料科學當中。
本研究第一部份,即利用發散反應方式製備出不同結構、不同代數的樹枝狀化合物、樹枝狀巨起始劑及樹枝狀單體,分別簡稱為HPAM、HPAM-S、GMA-HPAM與MA-APM。並且利用硫醇-幾內醯胺雙成分活性起始系統、自由基起始系統等聚合反應製備出不同構型之末端型樹枝狀共聚物HPAM-co-PS與側鏈型樹枝狀共聚物PGMA-HPAM-r-PS、PMA-HPAM-r-PS,將其分別簡稱為GX-PSY、GX-Y和MGX-Y。各類型的樹枝狀共聚物經由溶劑誘導相分離法製備出一系列的樹枝狀共聚物薄膜材料。其中,透過電子顯微鏡的觀察得知將樹枝狀結構導入共聚物鏈段當中,有助於共聚物分子鏈段具備自組裝之行為。並且在特定的條件比例下,樹枝狀共聚物能形成秩序規則之自組裝排列。此外,樹枝狀共聚物結構鏈段間的作用力會影響所製備之薄膜的表面構型,導致末端型樹枝狀共聚物HPAM-co-PS製備之薄膜表面呈現著高低差幅度較小的相分離構型;而側鏈型樹枝狀共聚物PGMA-HPAM-r-PS與PMA-APM-r-PS所製備出的薄膜表面構型,則皆呈現微孔的型態。由於樹枝狀結構的三維立體構型使得樹枝狀鏈段在薄膜表面經由自組裝排列過程後,所佔的體積分率分別高達40% (G3-PS10000)、58% (G2-37)、46% (G3-33)與17% (MG-43)。此外,從共聚物溶液微胞的粒徑分析,可以觀察得知利用溶解度參數與樹枝狀共聚物相近的溶劑,較易使樹枝狀共聚物在溶液中形成較為完整的微胞結構,使其更能發揮出自組裝的行為能力進而在薄膜表面得到秩序規則之自組裝排列。利用熱性質的分析,可以得知樹枝狀鏈段的導入有助於提供自由體積,以及提升樹枝狀共聚物的熱穩定性。樹枝狀共聚物分別在G2-58、G3-54與MG2-54的條件下,其熱裂解溫度分別可以高達392℃、395℃和398℃。而經由分子鏈段間作用力所造成的熱性質與相型態性質的比較探討,可以發現出特殊的趨勢以供快速製備秩序排列之樹枝狀共聚物薄膜。
本研究的第二部分,則是利用所製備之樹枝狀共聚物薄膜應用於各式的材料科學當中。首先是將表面具有規則微孔排列的樹枝狀共聚物薄膜當作分子拓印的模板。利用單體、交鏈劑與光起始劑的混合溶液舖於模板表面,經由UV光起始聚合、脫膜等拓印製備過程。之後,便能得到一表面呈現鏡相凸起構型之高分子薄膜RG-25。利用表面具有微孔自組裝規則排列的樹枝狀共聚物薄膜經由侵蝕的製備程序。將表面的樹枝狀結構除去,進而得到表面呈現秩序規則之排列的均聚物薄膜。使用具有自組裝行為之樹枝狀共聚物薄膜,利用樹枝狀鏈段的螯合官能基團作為零維奈米材料成長的基板。成功地利用螯合和還原的製備方式,將CdS奈米粒子成長於薄膜表面。藉由薄膜成分中樹枝狀鏈段的含量不同,進而達到控制CdS奈米顆粒在表面所呈現的數量與分佈。甚至可以製備出表面具有蜂窩狀規則CdS奈米顆粒排列之奈米薄膜複合材料。最後,利用本研究所製備之側鏈型樹枝狀共聚物PGMA-HPAM-r-PS當作相容助劑,與均聚物PS和PMMA進行混摻製程。當樹枝狀共聚物PGMA-HPAM-r-PS添加量達混摻系統的40 wt%時,可以得到一規則排列之表面圓球型態的混摻薄膜材料。
Fabrication of nanometer and micrometer scale ordered structures at low price is an essential objective of a wide range application, such as current science and technology for the miniaturization of electronic, optic, and magnetic device, and sensors etc. Numerous methods such as photolithography or chemical vapor deposition have successfully fabricated ordered structures over a wide range of length scales, however, still require tedious multiple-step processes with high costs. Notable, the method using molecular self-organization is a good way that one can directly produce the ordered two- or three-dimensional structures and tailored surfaces by a single step. In addition, with the rapid development of synthetic chemistry, many new molecular structures can be designed to investigate the role of polymer topology on the physical and chemical properties of macromolecules in traditional, block, hyperbranch, and, in particular, dendritic copolymers. Among them, dendritic macromolecular chemistry has recently attracted significant attention due to its various functions and the properties that result from its special structures and characteristics. This investigation proposes a straightforward method for synthesizing various kinds of self-assembling dendritic-linear copolymer to create ordered films via solvent-induced phase separation.
In first section of this study, the various kinds of HPAM dendron, HPAM-GX-S dendritic macroinitiator, GMA-HPAM dendritic macromonomer, and MA-APM dendritic macromonomer were synthesized by using the divergent growth method. Moreover, the end-chain dendritic-linear copolymers, HPAM-co-PS, were developed by using the thiol-caprolactam initiation or free radical polymerization system with the dendritic macroinitiator and styrene monomer. And the side-chain dendritic-linear copolymers, PGMA-HPAM-r-PS and PMA-APM-r-PS, were synthesized via free radical polymerization involving the styrene monomer and the dendritic macromonomer, GMA-HPAM or MA-APM. Furthermore, all kinds of the dendritic-linear copolymer films were prepared by using the solvent-induced phase separation method at room temperature. The morphological structures on the all kinds of the dendritic-linear copolymer films showed the self-assembling behavior as functions of dendritic segments in the generation and content in electronic microscope. There existed an ordered structure on the copolymer film surfaces when the dendritic segment contents approximately reached a critical equilibrium. In addition, the interactions in the dendritic-linear copolymer affected the surface morphologies of the dendritic-linear copolymer films, and it made the dendronized copolymer, HPAM-co-PS, to show a phase separation membrane structure, and the side-chain dendritic-linear copolymers, PGMA-HPAM-r-PS and PMA-APM-r-PS, to show a microporous membrane structure.
In second section of this study, the self-assembling dendritic-linear copolymers were used for various kinds of material application. The dendritic-linear PGMA-HPAM-r-PS copolymer was used as templates for the molecular imprinting films. The solution, with monomers, the crosslinking agent, and the pototinitiator, was coated onto the surface of templates. Then , the molecular imprinting film RG-25 was received via the UV-light initiation and the stripping procedure. Moreover, the homogeneous composition of the surface of the membrane with the hexagonally ordered arrays was received by the dendritic-linear PGMA-HPAM-r-PS copolymer, was used as a template, via the alkali treatment. Furthermore, the dendritic-linear PGMA-HPAM-r-PS copolymers were used as template for the growth of nanomaterials. The dendritic segments in the copolymer were the coordination sites for chelating cadmium ions, and served as nano-templates for the growing of CdS nanocrystals (quantum dots). The diameters of the CdS nanocrystal on the dendritic-linear copolymer template were uniform in the range of 5 to 8 nm. In particular, large-area, the hexagonally-ordered CdS nanocrystal-array domains were discovered over the dendritic-linear copolymer template in this study. Finally, the dendritic-linear copolymers were used as the dispersing agent for the blend of PS and PMMA homopolymers. When the content of the dendritic-linear copolymer reached at 40 wt% in the blending system, the ordered surface morphology of the blending membrane could be received.
1. Naj, A. K. Persistent Inventor Markets a Molecule. Wall Street J., p. B1, 1996.
2. Tomalia, D. A.; Brothers II, H. M.; Piehler, L. T.; Hsu, Y. Polym. Mater. Sci. & Eng 1995, 73, 75-76.
3. Tomalia, D. A. Macromol. Symp. 1996, 101, 243-255.
4. Dvornic, P. R.; Tomalia, D. A. Journal of the Serbian Chemical Society 1996, 61, 1032-1041.
5. Flory, P. J. Inter. J. of Polym. Mater. 1973, 2, 265-269.
6. Flory, P. J. American Chemical Society, Polymer Preprints, Division of Polymer Chemistry 1974, 15, 9-13.
7. Flory, P. J. Rubber Chemistry and Technology. 1975, 48, 513-525.
8. Tomalia, D. A. Prog. Polym. Sci. 2005, 30, 294-324.
9. Buhleier, E.; Wehner, W.; Vögtle, F. Synthesis 1978, 9, 155-158.
10. Denkewalter, R. G.; Kolc, J.; Lukasavage, W. J. U.S. Patent 4, 289, 872, September 15, 1981.
11. Denkewalter, R. G.; Kolc, J.; Lukasavage, W. J. U.S. Patent 4, 360, 646, November 23, 1982.
12. Denkewalter, R. G.; Kolc, J.; Lukasavage, W. J. U.S. Patent 4, 410, 688, October 18, 1983.
13. Aharoni, S. M.; Crosby Ⅲ, C. R.; Walsh, E. K. Macromolecules 1982, 15, 1093-1098.
14. Tomalia, D. A.; Dewald, J. R.; Hall, M. J.; Martin, S. J.; Smith, P. B. In: Preprints of the 1st SPSJ international polymer conference, society of polymer science, August, Kyoto, Japan; 1984.
15. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. (Tokyo) 1985, 17, 117-132.
16. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Macromolecules 1986, 19, 2466-2468.
17. Tomalia, D. A.; Dewald, T. R. U.S. Patent 4, 568, 737, February 4, 1986.
18. Newkome, G. R.; Yao, Z. -Q.; Baker, G. R.; Gupta, V. K. J. Org. Chem. 1985, 50, 2003-2004.
19. Wörner, C.; Mülhaupt, R. Angew. Chem. Int. Ed. Engl. 1993, 32, 1306-1308.
20. De Brabander-van den Berg, E. M. M.; Meijer, E. W. Angew. Chem. Int. Ed. Engl. 1993, 32, 1308-1311
21. Fréchet, J. M. J.; Jiang, Y.; Hawker, C. J.; Philippides, A. E. Proc. IUPAC Int. Symp. Macromol. (Seoul) 1989, 19.
22. Fréchet, J. M. J.; Hawker, C. J. J. Am. Chem. Soc. 1990, 112, 7638-7647.
23. Moore, J. S.; Xu, Z. Macromolecules 1991, 24, 5893-5894.
24. Xu, Z.; Moore, J. S. Angew. Chem. Int. Ed. Engl. 1993, 32, 246-248.
25. Kawaguchi, T.; Walker, K. L.; Wilkins, C. L.; Moore, J. S. J. Am. Chem. Soc. 1995, 117, 2159-2165.
26. Moore, J. S. Acc. Chem. Res. 1997, 30, 402-413.
27. Miller, T. M.; Neenan, T. X. Chem. Mater. 1990, 2, 346-349.
28. Miller, T. M.; Neenan, T. X.; Zayas, R.; Bair, H. E. J. Am. Chem. Soc. 1992, 114, 1018-1025.
29. Newkome, G. R.; Baker, G. R.; Saunders, M. J.; Russo, P. S.; Gupta, V. K.; Yao, Z. -Q.; Miller, J. E.; Bouillion, K. J. Chem. Soc. Chem. Commum. 1986, 752-753.
30. Newkome, G. R.; Baker, G. R.; Young, J. K.; Traynham, J. G. J. Polym. Sci. Part A: Polym. Chem. 1993, 31, 641-651.
31. Dietrich, G. Angew. Chem. Int. Ed. Engl. 1997, 36, 1951-1954.
32. Nicole, A.; Didier, A. Bulletin de la Societe Chimique de France 1995, 32, 875-909.
33. Grayson, S. M.; Fréchet, J. M. J. Chem. Rev. 2001, 101 (12), 3819-3868.
34. Fréchet, J. M. J.; Hawker, C. J.; Gitsov, I.; Leon, J. W. J. Macromol. Sci. Pure Appl. Chem. 1996, A33, 1399-1425.
35. Fréchet, J. M. J. Science 1994, 263, 1710-1715.
36. Wooley, K. L.; Hawker, C. J.; Lee, R., Fréchet, J. M. J. Polym. J. 1994, 26, 187-197.
37. Gitsov, I.; Wooley, K. L.; Hawker, C. J.; Ivancva, P. T.; Fréchet, J. M. J. Macromolecules 1993, 26, 5621-5627.
38. Tomalia, D. A.; Dupont-Durst, H. Top. Curr. Chem. Soc. Perkin Trans. 1, 1993, 1287-1298.
39. Mourey, T. H.; Turner, S. R.; Rubinstein, M.; Fréchet, J. M. J.; Hawker, C. J.; Wooley, K. L. Macromolecules 1992, 25, 2401-2406.
40. Chung, S. J.; Kim, K. S.; Lin, T. C.; He, G. S., Switatkiewicz, J.; Prasad, P. N. J. Phys. Chem. B 1999. 103, 10741-10745.
41. Yokoyama, S.; Nakahama, T.; Otomo, A.; Mashiko, S. Thin Solid Films 1999, 331, 243-248.
42. Yokoyama, S.; Nakahama, T.; Otomo, A.; Mashiko, S. J. Am. Chem. Soc. 2000, 122, 3174-3175.
43. Adronov, A.; Fréchet, J. M. J.; He, G. S.; Kim, K. S.; Chung, S. J.; Swiatkiewicz, J.; Prasad, P. N. Chem. Mater. 2000, 12, 2838-2841.
44. Ma, H.; Jen, A. K.; Adv. Mater. 2001, 13, 1201-1205.
45. Ma, H.; Chen, Q.; Sasa, T.; Dalton, L. R.; Jen, A. K. J. Am. Chem. Soc. 2001, 123, 986-987.
46. Wiener, E. C.; Auteri, F. P.; Chen, J. W.; Brechbiel, M. W.; Gansow, O. A.; Schneider, D. S.; Belford, R. L.; Clarkson, R. B.; Lauterbur, P. C. J. Am. Chem. Soc. 1996, 118, 7774-7782.
47. Fischer, M.; Vögtle, F. Angew. Chem. Int. Ed. Engl. 1999, 38, 884-905.
48. Bryant, L. H.; Brechbiel, M. W.; Bulte, J. W. M.; Herynek, V.; Frank, J. A. J. Magn. Reson. Imaging 1999, 9, 348-352.
49. Thomas, T. P.; Patri, A. K.; Myc, A.; Myaing, M. T.; Ye, J. Y.; Norris, T. B.; Baker, J. R. Biomacromolecules 2004, 5, 2269-2274.
50. Knapen, J. W. J.; van der Made, A. W.; de Wilde, J. C.; van Leeuwen, P. W. M. N.; Wijkens, P.; Grove, D. M.; van Koten, G. Nature 1994, 372, 659-663.
51. Balogh, L.; Tomalia, D. A. J. Am. Chem. Soc. 1998, 120, 7355-7356.
52. Köllner, C.; Pigin, B.; Togni, A. J. Am. Chem. Soc. 1998, 120, 10274-10275.
53. Kleij, A. W.; Gossage, R. A.; Jastrzebski, J. T. B. H.; Lutz, M.; Spek, A. L.; van Koten, G. Angew. Chem. Int. Ed. Engl. 2000, 39, 176-178.
54. Gröhn, F.; Bauer, B. J.; Akpalu, Y. A.; Jackson, C. L.; Amis, E. J. Macromolecules, 2000, 33, 6042-6050.
55. Liang, C. O.; Helms, B.; Hawker, C. J.; Fréchet, J. M. J. Chem. Commun. 2003, 20, 2524-2525.
56. Naylor, A. M.; Goddard, W. A. I.; Kiefer, G. E.; Tomalia, D. A. J. Am. Chen. Soc. 1989, 111, 2339-2341.
57. Newkome, G. R.; Moorefield, C. N.; Baker, G. R.; Saunder, M. J.; Grossman, S. H.; Angew. Chem. Int. Ed. Engl. 1991, 30, 1178-1180.
58. Jasen, J. F. G. A.; de Brabander-van den Berg, E. M. M.; Meijer, E. W. Science 1994, 266, 1226-1229.
59. Jasen, J. F. G. A.; Jasen, R. A. J.; de Brabander-van den Berg, E. M. M.; Meijer, E. W. Adv. Mater. 1995, 7, 561-564.
60. Jockusch, S.; Turro, N. J.; Tomalia, D. A. Macromolecules 1995, 28, 7416-7418.
61. Li, Y.; Dubin, P. L.; Spindler, R.; Tomalia, D. A. Macromolecules 1995, 28, 8426-8428.
62. Newkome, G. R.; Woosley, B. D.; He, E.; Moorefield, C. N.; Gauther, R.; Baker, G. R.; Escamilla, G. H.; Merrill, J.; Luftmann, H. Chem. Commun. 1996, 24, 2737-2738.
63. Zeng, F.; Zimmerman, C. Chem. Rev. 1997, 97, 1681-1712.
64. Zimmerman, S. C.; Wang, Y.; Bharathi, P.; Moore, J. S. J. Am. Chem. Soc. 1998, 120, 2172-2181.
65. Newkome, G. R.; He, E.; Moorefield, C. N.; Chem. Rev. 1999, 99, 1689-1746.
66. Bosman, A. W.; Hanssen, H. M.; Meijer, E. W.; Chem. Rev. 1999, 99, 1665-1688.
67. Cheng, C. X.; Jiao, T. F.; Tang, R. P.; Chen, E. Q.; Liu, M. H.; Xi, F. Macromolecules 2006, 39, 6327-6330.
68. Percec, V.; Dulcey, A. E.; Peterca, M.; Ilies, M.; Sienkowska. M. J.; Heiney, P. A. J. Am. Chem. Soc. 2005, 127, 17902-17909.
69. Schlüter, A. D.; Rabe, J. P. Angew. Chem. Int. Ed. Engl. 2000, 39, 864-883.
70. Tomalia, D. A.; Hedstrand, D. M.; Ferritto, M. S. Macromolecules 1991, 24, 1435-1438
71. Leduc, M. R.; Hawker, C. J.; Dao, J. L.; Fréchet, J. M. J. J. Am. Chem. Soc. 1996, 118, 11111-11118.
72. Gillies, E. R.; Jonsson, T. B.; Fréchet, J. M. J. J. Am. Chem. Soc. 2004, 126, 11936-11943.
73. Yoo, Y. S.; Choi, J. H.; Oh, N. K.; Zin, W. C.; Park, S.; Chang, T., Lee, M.; Cho, B. K. J. Am. Chem. Soc. 2004, 126, 6294-6300.
74. Kim, Y. S.; Gil, E. S.; Lowe, T. L. Macromolecules 2006, 39, 7805-7811.
75. Cheng, C. X.; Tian, Y.; Shi, Y. Q.; Tang, R. P.; Xi, F. Langmuir 2005, 21, 6576-6581.
76. Mackay, M. E.; Hong, Y.; Jeong, M.; Tande, B. M.; Wagner, N. J.; Hong, S.; Gido, S. P.; Vestberg, R.; Hawker, C. J. Macromolecules 2002, 35, 8391-8399.
77. Tian, L.; Hammond, P. T. Chem. Mater. 2006, 18, 3976-3984.
78. Tian, L.; Hammond, P. T. Chem. Commum. 2006, 3489-3491.
79. Percec, V.; Peterca, M.; Dulcey, A. E.; Imam, M. R.; Hudson, S. D.; Nummelin, S.; Adelman, P.; Heiney, P. A. J. Am. Chem. Soc. 2008, 130, 13079-13094.
80. Sanitini, C. M. B.; Johnson, M. A.; Boedicker, J. Q.; Hatton, T. A.; Hammond, P. T. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 2784-2814.
81. Sanitini, C. M. B.; Hatton, T. A.; Hammond, P. T. Langmuir 2006, 22, 7487-7498.
82. Frauenrath, H. Prog. Polym. Sci. 2005, 30, 325-384.
83. Crespo, L.; Sanclimens, G.; Pons, M.; Giralt, E.; Royo, M.; Albericio, F. Chem. Rev. 2005, 105, 1663-1681.
84. Newkome, G. R.; Shreiner, C. D. Polymer 2008, 49, 1-173.
85. Rosen, B. M.; Wilson, C. J.; Wilson, D. A.; Peterca, M.; Iman, M. R.; Percec, V. Chem. Rev. 2009, 109, 6275-6540.
86. Gitsov, I.; Wooley, K. L.; Fréchet, J. M. J. Angew. Chem. Int. Ed. Engl. 1992, 31, 1200-1202.
87. Gitsov, I.; Fréchet, J. M. J. Macromolecules 1993, 26, 6536-6546.
88. Chapman, T. M.; Hillyer, G. L.; Mahan, E. J.; Shaffer, K. A. J. Am. Chem. Soc. 1994, 116, 11195-11196.
89. Van Hest, J. C. M.; Delnoye, D. A. P.; Baars, M. W. P. L.; van Genderen, M. H. P. Meijer, E. W. Science 1995, 268, 1592-1595.
90. Matyjaszewski, K.; Shiemoto, T.; Fréchet, J. M. J.; Leduc, M. Macromolecules 1996, 29, 4167-4171.
91. Iyer, J.; Fleming, K.; Hammond, P. T. Macromolecules 1998, 31, 8757-8765.
92. Ihre, H.; Padilla De Jesus, O. L.; Fréchet, J. M. J. J. Am. Chem. Soc. 2001, 123, 5908-5917.
93. Zubarev, E. R.; Stupp, S. I. J. Am. Chem. Soc. 2002, 124, 5762-5773.
94. Hawker, C. J.; Wooley, K. L. Science 2005, 309, 1200-1204.
95. Lee, C. C.; Mackay, J. A.; Fréchet, J. M. J.; Szoka, F. C. Nature Biotechnol. 2005, 23, 1517-1526.
96. Holzmuleller, J.; Genson, K. L.; Park, Y.; Yoo, Y. –S.; Park, M. –H.; Lee, M.; Tsukruk, V. Langmuir 2005, 21, 6392-6398.
97. Rehahn, M.; Schlüter, A. D.; Wegner, G.; Feast, W. J. Polymer 1989, 30, 1060-1062.
98. Moore, J. S.; Stupp, S. I. Macromolecules 1990, 23, 65-70.
99. Karakaya, B.; Claussen, W.; Gessler, K.; Saenger, W.; Schlüter, A. D. J. Am. Chem. Soc. 1997, 119, 3296-3301.
100. Sashiwa, H.; Shigemasa, Y.; Roy, R. Macromolecules 2001, 34, 3905-3909.
101. Luo, J.; Liu, S.; Haller, M.; Liu, L.; Ma, H.; Jen, A. K. Y. Adv. Mater. 2002, 14, 1763-1768.
102. Zhuravel, M. A.; Davis, N. E.; Nguyen, S. T.; Koltover, I. J. Am. Chem. Soc. 2004, 126, 9882-9883.
103. Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem. Int. Ed. Engl. 2004, 43, 3928-3932.
104. Helms, B.; Mynar, J. L.; Hawker, C. J.; Fréchet, J. M. J. J. Am. Chem. Soc. 2004, 126, 15020-15021.
105. Nyström, A.; Hult, A. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 3852-3867.
106. Tomalia, D. A.; Kirchhoff, P. M. U.S. Patent 4, 694, September 15, 1987.
107. Tomalia, D. A.; Naylor, A. M.; Goddard Ⅲ, W. A. Angew. Chem. Int. Ed. Engl. 1990, 29, 138-175.
108. Ouali, N.; Mery, S.; Skoulios, A.; Noirez, L. Macromolecules 2000, 33, 6185-6193.
109. Grayson, S. M.; Fréchet, J. M. J. Macromolecules 2001, 34, 6542-6544.
110. Shu, L. J.; Schlüter, A. D.; Ecker, C.; Severin, N.; Rabe, J. P. Angew. Chem. Int. Ed. Engl. 2001, 40, 4666-4669.
111. Xu, Y.; Gao, C.; Kong, H.; Yan, D.; Jin, Y. Z.; Watts, P. C. P. Macromolecules 2004, 37, 8846-8853.
112. Malkoch, M.; Carlmark, A.; Wodegiorgis, A.; Hult, A.; Malmström, E. E. Macromolecules 2004, 37, 322-329.
113. Nystrom, A.; Hult, A. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 3852-3867.
114. Lee, C. C.; Fréchet, J. M. J. Macromolecules 2006, 39, 476-481.
115. Percec, V.; Heck, J.; Ungar, G. Polym. Prepr. 1992, 33, 152-153.
116. Percec, V.; Lee, M.; Heck, J.; Blackwell, H. E.; Ungar, G.; Alvarez-Castillo, A. J. Mater. Chem. 1992, 2, 931-938.
117. Neubert, I.; Amoulong-Kirstein, E.; Schlüter, A. D.; Dautzengerg, H. Macromol. Rapid Commum. 1996, 17, 517-527.
118. Percec, V.; Schlueter, D.; Ronda, J. C.; Johansson, G.; Ungar, G.; Zhou, J. P. Macormolecules 1996, 29, 1464-1472.
119. Percec, V.; Schlueter, D. Macromolecules 1997, 30, 5783-5790.
120. Percec, V.; Ahn, C. H.; Ungar, G.; Yeardley, D. J. P.; Möller, M.; Sheiko, S. S. Nature 1998, 391, 161-164.
121. Neubert, I.; Schlüter, A. D. Macromolecules 1998, 31, 9372-9378.
122. Zhang, Y.; Huang, J.; Chen, Y. Macromolecules 2005, 38, 5069-5077.
123. Percec, V.; Rudick, J. G.; Peterca, M.; Wagner, M.; Obata, M.; Mitchell, C. M.; Cho, W. –D.; Balagurusamy, V. S. K.; Heiney, P. A. J. Am. Chem. Soc. 2005, 127, 15257-15264.
124. Zhang, X.; Chen, Z.; Würthner, F. J. Am. Chem. Soc. 2007, 129, 4886-4887.
125. Li, W.; Zhang, A.; Feldman, K.; Walde, P.; Schlüter, A. D. Macromolecules 2008, 41, 3659-3667.
126. Yi, Z.; Zhang, Y.; Chen, Y.; Xi, F. Macromol. Rapid Commun. 2008, 29, 757-762.
127. Hudson, S. D.; Jeng, H. –T.; Percec, V.; Cho, W. –D.; Johansson, G.; Ungar, G.; Balagurusamy, V. S. K. Science 1997, 278, 449-452.
128. Beginn, U.; Zipp, G.; Mourran, A.; Walther, P.; Möller, M. Adv. Mater. 2000, 12, 510-513.
129. Percec, V.; Bera, T. K. Biomacromolecules 2002, 3, 167-181.
130. Yoon, D. K.; Lee, S. R.; Kim, Y. H.; Choi, S. –M.; Jung, H. –T. Adv. Mater. 2006, 18, 509-513.
131. Kim, J. –K.; Lee, E.; Lim, Y. –B.; Lee, M. Angew. Chem. Int. Ed. Engl. 2008, 47, 4662-4666.
132. Gilies, M. D.; Liu, S.; Emanuel, R. L.; Gibb, B. C.; Grayson, S. M. J. Am. Chem. Soc. 2008, 130, 14430-14431.
133. Kim, T. D.; Kuo, J.; Tian, Y.; Ka, J. –W.; Tucker, N. M.; Haller, M.; Kang, J. –W.; Jen, A. K. –Y. Macromolecules 2009, 39, 1676-1680.
134. Feng, S.; Xiong, X.; Zhang, G.; Xia, N.; Chen, Y.; Wang, W. Macromolecules 2009, 42, 281-287.
135. Whitesides, G. M.; Grzbowski, B. Science 2002, 295, 2418-2421.
136. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312-1319.
137. Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240-251.
138. Tsitsilianis, C.; Staikos, G. Macromolecules 1992, 25, 910-916.
139. Khandpur, A. K.; Foerster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Macromolecules 1995, 28, 8796-8806.
140. Bang, J.; Kim, S. H.; Drockenmuller, E.; Misner, M. J.; Russell, T. P.; Hawker, C. J. J. Am. Chem. Soc. 2006, 126, 7622-7629.
141. Gong, Y.; Huang, H.; Hu, Z.; Chen, Y.; Chen, D.; Wang, Z.; He, T. Macromolecules 2006, 39, 3369-3376.
142. Huang, Y.; Liu, H.; Hu, Y. Macromol. Theory Simul. 2006, 15, 321-330.
143. Masuda, J.; Takano, A.; Suzuki, J.; Nagata, Y.; Noro, A.; Hayashida, K.; Matsushita, Y. Macromolecules 2007, 40, 4023-4027.
144. Rider, D. A.; Cavicchi, K. A.; Power-Billard, K. N.; Russell, T. P.; Manners, I. Macromolecules 2005, 38, 6931-6938.
145. Tang, C.; Lennon, E. M.; Frefrickson, G. H.; Kramer, E. J.; Hawker, C. J. Science 2008, 322, 429-432.
146. Tand, C.; Hur, S. –M.; Stahl, B. C.; Sivanandan, K.; Dimitriou, M.; Pressly, E.; Frefrickson, G. H.; Kramer, E. J.; Hawker, C. J. Macromolecules 2010, 43, 2880-2889.
147. Pochan, D. J.; Pakstis, L. Macrocolecules 2002, 35, 9239-9242.
148. Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Smidrkal, J.; Peterca, M.; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.; Duan, H.; Magonov, S. N.; Vinogradov, S. A. Nature 2004, 430, 764-768.
149. Percec, V.; Mitchell, C. M.; Cho, W. –D.; Uchida, S.; Glodde, M.; Ungar, G.; Zeng, X.; Kiu, Y.; Balagurusamy, V. S. K.; Heiney, P. A. J. Am. Chem. Soc. 2004, 126, 6078-6094.
150. Percec, V.; Ungar, G.; Peterca, M. Science 2006, 313, 55-56.
151. Percec, V.; Won, B. C.; Peterca, M.; Heiney, P. A. J. Am. Chem. Soc. 2007, 129, 11265-11278.
152. Peterca, M.; Percec, V.; Imam, M. R.; Leowanawat, P.; Morimitsu, K.; Heiney, P. A. J. Am. Chem. Soc. 2008, 130, 14840-14852.
153. Percec, V.; Imam, M. R.; Peterca, M.; Wilson, D. A.; Heiney, P. A. J. Am. Chem. Soc. 2009, 131, 1294-1304.
154. Percec, V.; Imam, M. R.; Peterca, M.; Wilson, D. A.; Graf, R.; Spiess, H. W.; Balagurusamy, V. S. K.; Heiney, P. A. J. Am. Chem. Soc. 2009, 131, 7662-7677.
155. Herod, T. E.; Duran, R. S. Langmuir 1998, 14, 6956-6968.
156. Zhang, Q.; Tsui, O. K. C.; Du, B.; Zhang, F.; Tang, T.; He, T. Macromolecules 2000, 33, 9561-9567.
157. Ishizu, K.; Tokuno, Y.; Makino, M. Macromolecules 2007, 40, 763-765.
158. Tercjak, A.; Serrano, E.; Garcia, I.; Ocando, C.; Mondragon, I. Acta Materialia 2007, 55, 6436-6443.
159. Deepa, P.; Jayakannan, M. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2351-2366.
160. Zhu, L.; Zhao, B. J. Phy. Chem. B 2008, 112, 11529-11536.
161. Tabu, H.; Shimomura, M. Langmuir 2005, 21, 1709-1711.
162. Ballew, H. W. Am. Biotecheol. Lab. 1997, May, 8.
163. Gupta, S.; Tuttle, G.; Sigalas, M.; Ho, K. M. Appl. Phys. Lett. 1997, 71, 2412-2414.
164. Judith, E. G.; Wijnhoven, J.; Willem, L. V. Science 1998, 281, 802-804.
165. Müller, M.; Zentel, R.; Maka, T.; Romanov, S. G.; Torres, C. M. S. Adv. Mater. 2000, 12, 1499-1503.
166. Fichet, G.; Cororan, N.; Ho, P. K. H.; Arias, A. C.; MacKenzie, J. D.; Huck, W. T. S.; Friend, R. H. Adv. Mater. 2004, 16, 1908-1912.
167. Deleuze, H.; Schultze, X.; Sherrington, D. C. Polymer 1998, 39, 6109-6114.
168. Kasemo, B. Surf. Sci. 2002, 500, 656-677.
169. Oberdisse, J.; Deme, B. Macromolecules 2002, 35, 4397-4405.
170. You, B.; Shi, L.; Wen, N.; Liu, X.; Wu, L.; Zi, J. Macromolecules 2008, 41, 6624-6626.
171. Mayer, A. B. R.; Grebner, W.; Wannemacher, R. J. Phys. Chem. B 2000, 104, 7278-7285.
172. Galloro, J.; Ginzbug, M.; MÍ gues, H.; Yang, S. M.; Coombs, N.; Safa-Sefat, A.; Greedan, J. E.; Manners, I.; Ozin, G. A. Adv. Funct. Mater. 2002, 12, 382-388.
173. Hong, J. C.; Park, J. H.; Chun, C.; Kim, D. Y. Adv. Funct. Mater. 2007, 17, 2462-2469.
174. Song, L.; Bly, R. K.; Wilson, J. N.; Bakbak, S.; Park, J. O.; Srinivasarao, M.; Bunz, U. H. F. Adv. Mater. 2004, 16, 115-118.
175. Zhang, Y.; Wang, C. Adv. Mater. 2007, 19, 913-916.
176. Widawski, G.; Rawiso, M.; François, B. Nature 1994, 369, 387-389.
177. Jenekhe, S. A.; Chen, X. L. Science 1999, 283, 372-375.
178. Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S. Science 2001, 292, 79-83.
179. Hu, Y. H.; Wang, C. C.; Huang. Y. H.; Wang, S. P.; Chen, C. Y. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 4976-4993.
180. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091-1098.
181. Rider, D. A.; Cavicchi, K. A.; Power-Billard, K. N.; Russell, T. P.; Manners, I. Macromolecules 2005, 38, 6931-6938.
182. Hawker, C. J.; Malmström, E. E.; Frank, C. W.; Kampf, J. P. J. Am. Chem. Soc. 1997, 119, 9903-9904.
183. Jahromi, S.; Palmen, J. H. M.; Steeman, P. A. M. Macromolecules 2000, 33, 577-581.
184. Kasko, A. M.; Heintz, A. M.; Pugh, C. Macromolecules 1998, 31, 256-271.
185. Levine, A. J.; Milner, S. T. Macromolecules 1998, 31, 8623-8637.
186. Förster, S. Macromolecules 1999, 32, 4043-4049.
187. Chou, C. -H.; Shu, C. -F. Macromolecules 2002, 35, 9673-9677.
188. Solomum, T.; Schimanski, A.; Sturm, H.; Illenberger, E. Macromolecules 2005, 38, 4231-4236.
189. Clark, D. T.; Thomas, H. R. J. Polym. Sci. 1978, 16, 791-820.
190. Clark, D. T.; Thomas, H. R. J. Polym. Sci. Polym. Chem. Ed. 1976, 14, 1671-1700.
191. Helfand, E. Macromolecules 1975, 8, 552-556.
192. Van Dijl, M. A.; van den Berg, R. Macromolecules 1995, 28, 6773-6778.
193. Choucair, A.; Lavigueur, C.; Eisenberg, A. Langmuir 2004, 20, 3894-3900.
194. Gong, Y. M.; Huang, H. Y.; Hu. Z. J.; Chen, Y. H.; Chen, D. J.; Wang, Z. B.; He, T. B. Macromolecules 2006, 39, 3369-3376.
195. Zhong, Z.; Gates, B.; Xia, Y.; Qin, D. Langmuir 2000, 16, 10369-10375.
196. Suh, K. Y.; Khademhosseini, A.; Eng, G.; Langer, R. Langmuir 2004, 20, 6080-6084.
197. Kim, D. H.; Kim, S. H.; Lavery, K.; Russell, T. P.; Nano Lett. 2004, 4, 1841-1844.
198. Barton, J. E.; Odom, T. W. Nano Lett. 2004, 4, 1525-1528.
199. Lin, Y.; Böker, A.; He, J.; Sill, K.; Xiang, H.; Abetz, C.; Li, X.; Wang, J.; Emrick, T.; Long, S. Nature 2005, 434, 55-59
200. Huang, J.; Tao, A. R.; Connor, S.; He, R.; Yang, P. Nano Lett. 2006, 6, 524-529.
201. Aizawa, M.; Buriak, J. M. J. Am. Chem. Soc. 2006, 128, 5877-5886.
202. Nanda J., Kuruvilla B. A. and Sarma D. D. Phys. Rev. B 1999, 59, 7473-7484.