| 研究生: |
夏兆威 Hsia, Chao-Wei |
|---|---|
| 論文名稱: |
湧浪分析與追蹤研究 A Study on the Swell Characteristics and Tracking |
| 指導教授: |
董東璟
Doong, Dong-Jiing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 風湧浪分離 、颱風湧浪 、湧浪源頭追蹤 |
| 外文關鍵詞: | Wind wave and swell separation, Typhoon swell, Swell tracking |
| 相關次數: | 點閱:79 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
海面紛紜波浪是由風浪及湧浪混合而成,其中湧浪具低耗散的特性可傳遞很長距離而不消散,當湧浪傳遞至近岸時,對海岸結構物的衝擊程度大,也易激起浪花威脅岸邊人員活動安全,本研究旨在分析台灣週遭海域湧浪特性並嘗試追蹤湧浪源頭。本研究挑選五個浮標資料進行湧浪資訊分析,並進一步統計以了解四周海域湧浪之分布情形。最大的湧浪波高記錄是在2012杰拉華颱風期間,波高達16.97公尺;在台灣北部與東部海域冬季期間湧浪較高,主要來自東北季風,平均達1.6公尺以上;台灣西南海域湧浪夏季期間湧浪較高,平均達1.15公尺以上,主要來自西南季風與颱風。從湧浪特性分析發現,颱風期間引起的湧浪波高大但影響時間短,平均約80小時;而季風系統引起的湧浪則高度小但影響時間長,最長可達一週以上。本研究挑選20個顯著湧浪案例,使用迴歸線法追蹤湧浪源頭,並以地面天氣圖與模式風場資料進行佐證,結果顯示此方法可以合理掌握湧浪來源。針對颱風期間之湧浪案例,本文發現湧浪多生成於颱風第一象限,且生成位置距離颱風中心約0.4-2.4倍最大七級暴風半徑處。研究發現部分湧浪追蹤結果不合理的案例因為天氣系統移動過快所致,颱風移動速度達18 公里/小時以上就無法成功追蹤,也顯示湧浪源頭追蹤方法之使用限制。
The coexistence of wind wave and swell often occurs in the sea. Swell can transmit to the nearshore for long distance with the characteristic of low-dissipated. Swell is likely to damage the coastal structures and endanger the safety of the people on shore. The purpose of this study is to analyze the characteristics of swell in Taiwan's waters and applied the swell tracking technology to typical swell events. The analysis results show that the swell height in the northern and eastern seas of Taiwan during the winter is higher than other seasons, with an average of more than 1.6 meters; the swell in the southwestern Taiwan during the summer is higher than other seasons, with an average of more than 1.15 meters. The swell induce by typhoon is high, but the impact time is short. The average duration is about 80 hours. In contrast, the swell induced by the monsoon is relative small but has a long duration of impact and can be up to a week or more. This study used the regression line method to find the source of the swell and corroborated the weather map and the wind field data. The results show that this method is suitable to find the sources of swell. From the case of swell during the typhoon, it was found that the swell was mostly generated in the first quadrant of the typhoon. The study also found that some cases of unreasonable tracking results were due to high speed of weather system movement (18 km/hr or more).
[1] 簡仲璟、曾相茂,「花蓮港颱風波浪特性研究」,第21屆海洋工程研討會,第55-62頁,1999。
[2] 李堉辰,「從方向波譜分離風湧浪之研究—有限吹風延時法」,國立成功大學水利及海洋工程研究所碩士論文,2017。
[3] Alves, J.H.G.M., “Numerical modeling of ocean swell contributions to the global wind-wave climate.” Ocean Modelling, 11, 98–122, 2006.
[4] Ardhuin, F., Chapron, B. and Collard, F., “Observation of swell dissipation across oceans.” Geophysical Research Letters, 36, L06607, 2009.
[5] Barber, N. F., and Ursell, F. “The generation and propagation of ocean waves and swell. I: Wave periods and velocities. ” Philos. Trans. Roy. Soc. London, 240A, 527–560, 1948.
[6] Bartsch, H. J., “Handbook of Mathematical Formulas.” Academic Press, 528, 1974.
[7] Cathles, L. M.IV, Okal, E. A. and MacAyeal, D. R., “Seismic observations of sea swell on the floating Ross Ice Shelf, Antarctica.” J. Geophys. Res., 114, F02015, 2009.
[8] Collard, F., Ardhuin, F. and Chapron, B., “Monitoring and analysis of ocean swell fields from space: new methods for routine observations.” J. Geophys. Res., 114, C07023, 2009.
[9] Chen, B., Yang, D., Meneveau, C. and Chamecki, M.. ” Effects of swell on transport and dispersion of oil plumes within the ocean mixed layer.” J. Geophys. Res., 121, 3564–3578, 2016.
[10] Doong, D. J., Chen, S. H., Kao, C. C., Lee, B. C. and Yeh, S. P., “Data quality check procedures of an operational coastal ocean monitoring network.” Ocean Engineering, 34, 234–246, 2007.
[11] Earle, M.D., “Development of algorithms for separation of sea and swell.” National Data Buoy Centre Tech. Rep. MEC-87-1, 53,1984.
[12] Gerling, T. W. “Partitioning sequences and arrays of directional ocean wave spectra into component wave systems.” J. Atmos. Oceanic Technol., 9, 444-458, 1992.
[13] Hasselmann, S., Hasselmann, K. and Brüning, C., “Extraction of wave spectra from SAR image spectra.” Dynamics and Modelling of Ocean Waves, G. J. Komen et al., Eds., Cambridge University Press, 391–401, 1994.
[14] Holt, B., Liu, A. K., Wang. D. W., Gnanadesikan, A. and Chen, H. S., “Tracking storm-generated waves in the northeast Pacific Ocean with ERS-1 synthetic aperture radar imagery and buoys.” J. Geophys. Res., 103, 7917–7929, 1998.
[15] Heimbach, P., and Hasselmann, K., “ Development and application of satellite retrievals of ocean wave spectra.” in Satellites, Oceanography and Society, edited by D. Halpern, 5–33, Elsevier, Amsterdam, 2000.
[16] Hwang, P. A., “Observations of swell influence on ocean surface roughness.” J. Geophys. Res., 113 , C12024, 2008.
[17] Hanson, J. L. and O. M. Phillips, “Automated analysis of ocean surface directional wave spectra.” J. Atmos. Oceanic Technol., 18, 277-293, 2001.
[18] Hanley, K. E., Belcher, S. E. and Sullivan, P. P., “A global climatology of wind–wave interaction.” J. Phys. Oceanogr., 40, 1263–1282, 2010.
[19] Högström, U., Rutgersson, A., Sahlée, E., Smedman, A. S., Hristov, T. S., Drennan, W. M. and Kahma, K. K., “Air-sea interaction features in the Baltic Sea and at a Pacific trade-wind site: An inter-comparison study.” Boundary Layer Meteorol., 147, 139–163, 2013.
[20] Munk, W. H., Miller, G. R., Snodgrass, F. E. and Barber, N. F., “Directional recording of swell from distant storms.” Philosophical Transactions of the Royal Society London, A255, 505–584, 1963.
[21] Mettlach, T., Wang, D. and Wittmann, P.,” Analysis and prediction of ocean swell using instrumented buoys.” J. Atmos. Oceanic Technol., 11, 506–524, 1994.
[22] Portilla, J., Ocampo-Torres, F. J. and Monbaliu, J., “Spectral partitioning and identification of wind sea and swell,” J. Atmos. Oceanic Technol., 26, 107-122, 2009.
[23] Rapley, C. G., “First observations of the interaction of ocean swell with sea ice using satellite radar altimeter data.” Nature, 307, 150–152, 1984.
[24] Snodgrass, F. E., Groves, G. W., Hasselmann, K., Miller, G. R., Munk, W. H. and Powers, W. H., “Propagation of ocean swell across the Pacific.” Philosophical Transactions of the Royal Society London, A259, 431-497, 1966.
[25] Semedo, A., “Atmosphere–ocean interactions in swell-dominated wave fields.” Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, Vol. 764, Acta Universitatis Upsaliensis Uppsala, 53, 2010.
[26] Semedo, A., Suseelj, K., Rutgersson, A. and Sterl, A.. “A global view on the wind sea and swell climate and variability from ERA-40.” Journal of Climate, 24, 1464–1479, 2011.
[27] Tolman, H. L., “User manual and system documentation of WAVEWATCH-III version 3.14.” NOAA/NWS/NCEP/MMAB Tech. Rep. 276, 220, 2009.
[28] Wu, L., Rutgersson, A., Sahlee, E. and Guo Larsen, X., “Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model.” Journal of Geophysical Research: Oceans, 121, 4633–4648, 2016.
[29] Young, I. R., “Seasonal variability of the global ocean wind and wave climate.” International Journal of Climatology, 19, 931–950, 1999.