簡易檢索 / 詳目顯示

研究生: 黃鈺倫
Huang, Yu-Lun
論文名稱: 奈米銀線/奈米碳管複合材料製備可拉伸式彈性電極
Fabrication of Silver Nanowires/Carbon Nanotubes for Stretchable Electrode Materials
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 88
中文關鍵詞: 高長徑比奈米銀線奈米碳管馬蹄型圖案拉伸彈性電極
外文關鍵詞: High aspect ratio silver nanowire, carbon nanotube, horseshoe pattern, stretch electrode
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用低壓抽氣沉積法及乾膜轉印法置備高長徑比奈米銀線 (Silver nanowires) 和奈米碳管 (Carbon nanotubes) 之馬蹄型奈米複合導電膜拉伸彈性電極。不同於以往文獻研究的導電膜,本文藉由結合奈米銀線的高長徑比與良好導電性、奈米碳管的高機械性質及馬蹄型圖案有效分散應力,製作出奈米複合導電膜,以改善拉伸彈性電極之性質。
    首先我們使用三種不同長度的奈米銀線製作導電膜,探討銀線長度對於導電膜電性及拉伸性質的影響。接著加入奈米碳管,期望藉由奈米碳管改善拉伸彈性電極的拉伸性質。最後,將導電膜製作成馬蹄型等不同圖案的拉伸彈性電極,探討是否能夠提升拉伸性質。
    對於導電膜我們進行一系列電性量測、電子顯微鏡表面觀察及1000次的拉伸疲勞度測試。實驗結果顯示,高長徑比奈米銀線導電膜相較於低長徑比銀線擁有較好的電性及拉伸性質;在混摻奈米碳管後,複合導電膜其在電性及疲勞測試中的表現比未混摻碳管的更好,表示奈米碳管確實能幫助提升拉伸性質;最後將導電膜製作成馬蹄型形狀,在經過疲勞測試之後表現較直線型優異,表示確實可以透過不同圖案來提升拉伸性質;而在電子及光學顯微鏡的觀察下,電極表面產生波浪狀結構,能夠抵銷拉伸過程中所帶來的長度變化。

    In this work, stretchable nanocomposite electrodes were successfully fabricated through vacuum evacuation and transference to PDMS. These electrodes consisted of silver nanowires (AgNWs) and carbon nanotubes (CNTs) which can enhance mechanical compliance and electrical conductivity when deformed. They also have excellent properties such as flexibility and stretch ability. We performed a series of electrical measurements, electron microscope surface observations and 1000 repeat stretch-recovery tests on the conductive membrane. The results show that the conductive films of high aspect ratio AgNWs have better electrical properties and lower resistance change (R/R0). After mixing CNTs, the performance of the composite conductive film in the electrical property and 1000 repeat stretch-recovery tests was better than that of unmixed CNTs, indicating that CNTs can indeed help decrease R/R0. Finally, the conductive film was made into a horseshoe shape. After 1000 repeat stretch-recovery tests, it performed better than the linear shape, indicating that R/R0 can be stabilized through the use of different patterns. As a result, we observed the formation of buckles by OM, which help to stabilize resistance during long-term stretch-recovery tests.

    摘要 I Extended Abstract II 誌謝 VIII 總目錄 IX 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧與原理 4 2.1 可拉伸式拉伸彈性電子材料的簡介與原理 4 2.1.1 簡介 4 2.1.2 預拉伸方法 5 2.1.3 馬蹄型圖案 7 2.1.4 本質具有拉伸性的導體材料 8 2.2 單層結構導電膜之彈性拉伸電極 12 2.2.1 奈米碳管導電膜 12 2.2.2 奈米銀線導電膜 13 2.3 奈米複合材料導電膜之彈性拉伸電極 16 2.4 可拉伸式彈性電子材料的線路印刷技術 19 2.4.1微觸印刷法(Microcontact Printing) 19 2.4.2噴塗法(Spray Coating) 20 2.4.3噴墨印刷(Inkjet Printing) 21 2.4.4網版印刷(Screen Printing) 22 2.4.5轉印法(Transfer Printing) 22 第三章 實驗方法及步驟 24 3.1 實驗材料 24 3.2 實驗儀器 24 3.3 實驗步驟 26 3.3.1 奈米銀線圖案化導電膜沉積 26 3.3.2 奈米碳管分散溶液製備 28 3.3.3 奈米銀線/奈米碳管分散溶液製備 29 3.3.4 奈米銀線/奈米碳管圖案化導電膜沉積 30 3.3.5 導電膜封裝 32 3.3.6 電性測試 34 3.4 結構鑑定與分析 36 3.4.1 場發射掃描式電子顯微鏡 (HR-FESEM) 36 3.4.2 光學顯微鏡 (Optical Microscope) 37 3.5 性質分析 38 3.5.1 導電性測試 38 第四章 結果與討論 39 4.1 不同奈米銀線長度之導電膜之研究 39 4.1.1 長度20-60微米奈米銀線之導電膜鑑定與性質分析 39 4.1.2 長度60微米奈米銀線之導電膜鑑定與性質分析 44 4.1.3 長度150微米奈米銀線之導電膜鑑定與性質分析 48 4.1.4 不同奈米銀線長度之導電膜綜合比較分析 52 4.2 混摻奈米碳管之導電膜之研究 59 4.2.1 奈米銀線/奈米碳管複合導電膜鑑定與性質分析 59 4.2.2 混摻奈米碳管前後之導電膜綜合比較分析 62 4.3 不同圖案之導電膜之研究 65 4.3.1 半馬蹄型導電膜之鑑定與性質分析 65 4.3.2 馬蹄型導電膜之鑑定與性質分析 69 4.3.3 不同圖案之導電膜綜合比較分析 72 4.4 導電膜之綜合比較分析 75 第五章 結論 80 第六章 參考文獻 82

    [1] D. S. Hecht, L. Hu, and G. Irvin, "Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures," Adv. Mater., vol. 23, pp. 1482–1513, 2011.
    [2] D. Li, W.-Y. Lai, Y.-Z. Zhang, and W. Huang, "Printable Transparent Conductive Films for Flexible Electronics," Adv. Mater., vol. 30, pp. 1704738, 2018.
    [3] X. Ho and J. Wei, "Films of Carbon Nanomaterials for Transparent Conductors," Materials, vol. 6, pp. 2155–2181, 2013.
    [4] 張肇哲and鄞盟松. "可拉伸式導電材料發展與應用趨勢," 工業技術研究, 2015.
    [5] Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, "Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells," Adv. Funct. Mater., vol. 21, pp. 1076–1081, 2011.

    [6] X. Yu, X. Yu, J. Zhang, L. Chen, Y. Long, and D. Zhang, "Optical properties of conductive silver-nanowire films with different nanowire lengths," Nano Research vol. 10, pp. 3706–3714, 2017.
    [7] S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, and J. N. Coleman, "The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter," Nanotechnology, vol. 23, pp. 185201, 2012.
    [8] K. Takeshi, K.-i. Okuyama, Y. Ohba, and M. Ueda, "New Negative-Type Photosensitive Poly (phenylene ether): 2 Poly (2-hydroxy-6-methylphenol-co-2, 6-dimethylphenol), a Cross-Linker, and a Photoacid Generator," Journal of Photopolymer Science and Technology, vol. 13, pp. 345-349, 2000.
    [9] P. Lee et al., "Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network," Adv. Mater., vol. 24, pp. 3326–3332, 2012.
    [10] L. Cai et al., "Direct Printing for Additive Patterning of Silver Nanowires for Stretchable Sensor and Display Applications," Adv. Mater. Technol. , vol. 1700232, 2017.
    [11] K. Izumi, Y. Ochiai, D. Shiokawa, Y. Yoshida, D. Kumaki, and S. Tokito, "Effects of silver nanowire concentration on resistivity and flexibility in hybrid conducting films," Japanese Journal of Applied Physics, vol. 56, pp. 05EB02 2017.
    [12] Y. R. Lee, H. Kwon, D. H. Lee, and B. Y. Lee, "Highly flexible and transparent dielectric elastomer actuators using silver nanowire and carbon nanotube hybrid electrodes," Soft Matter, vol. 13, pp. 6390–6395, 2017.
    [13] J. S. Woo et al., "Electrically Robust Metal Nanowire Network Formation by In-Situ Interconnection with Single-Walled Carbon Nanotubes," Sci Rep, vol. 4, pp. 4804, 2014.
    [14] H. H. Khaligh and I. A. Goldthorpe, "Failure of silver nanowire transparent electrodes under current flow," Nanoscale Research Letters, vol. 8, pp. 235, 2013.
    [15] J. S. Park, M. Rezaei, and W. S. Kim, "Sustained Percolation in Stretched Silver Nanowire Networks for Stretchable Inter-Connection Applications," Advanced Engineering Materials, vol. 16, pp. 905-908, 2014.
    [16] 何首毅. "可拉伸導電材料," 工業技術研究, 2018.
    [17] D. S.Gray, J. Tien, and C. S. Chen, "High-Conductivity Elastomeric Electronics," Adv. Mater., vol. 16, pp. 393-397, 2004.
    [18] M. Gonzalez, F. Axisa, M. V. Bulcke, D. Brosteaux, B. Vandevelde, and J. Vanfleteren, "Design of metal interconnects for stretchable electronic circuits," Microelectronics Reliability, vol. 48, pp. 825–832, 2008.
    [19] A. Jahanshahi et al., "Stretchable Circuits with Horseshoe Shaped Conductors Embedded in Elastic Polymers," Japanese Journal of Applied Physics, vol. 52, pp. 05DA18, 2013.
    [20] K. D. Harris, A. L. Elias, and H.-J. Chung, "Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies," J Mater Sci, vol. 51, pp. 2771–2805, 2016.
    [21] D.-H. Kim, J. Xiao, J. Song, Y. Huang, and J. A. Rogers, "Stretchable, Curvilinear Electronics Based on Inorganic Materials," Adv. Mater., vol. 22, pp. 2108–2124, 2010.
    [22] C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, "Stretchable Supercapacitors Based on Buckled Single-Walled Carbon Nanotube Macrofilms," Adv. Mater., vol. 21, pp. 4793–4797, 2009.
    [23] WentingDang, V. Vinciguerra, L. Lorenzelli, and R. Dahiya, "Printable stretchable interconnects," Flex. Print. Electron., vol. 2, pp. 013003, 2017.
    [24] B. C. K. Tee and J. Ouyang, "Soft Electronically Functional Polymeric Composite Materials for a Flexible and Stretchable Digital Future," Adv. Mater., vol. 30, pp. 1802560, 2018.
    [25] W. Wu, "Stretchable electronics: functional materials, fabrication strategies and applications," Sci. Technol. Adv. Mater., vol. 20, pp. 187-224, 2019.
    [26] J. Wu, J. Zang, A. R. Rathmell, X. Zhao, and B. J. Wiley, "Reversible Sliding in Networks of Nanowires," Nano Lett., vol. 13, pp. 2381−2386, 2013.
    [27] S. Han et al., "Fast Plasmonic Laser Nanowelding for a Cu-Nanowire Percolation Network for Flexible Transparent Conductors and Stretchable Electronics," Adv. Mater., vol. 26, pp. 5808–5814, 2014.
    [28] S. Yao and Y. Zhu, "Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires," Nanoscale, vol. 6, pp. 2345–2352, 2014
    [29] P. Lee et al., "Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network," Adv. Mater., vol. 24, pp. 3326–3332, 2012.
    [30] Y. Chen, Z. Ouyang, M. Gu, and W. Cheng, "Mechanically Strong, Optically Transparent, Giant Metal Superlattice Nanomembranes From Ultrathin Gold Nanowires," Adv. Mater., vol. 25, pp. 80–85, 2013.
    [31] S. Gong et al., "A wearable and highly sensitive pressure sensor with ultrathin gold nanowires," Nat Commun, vol. 5, pp. 3132, 2014.
    [32] S. Han et al., "Fast Plasmonic Laser Nanowelding for a Cu-Nanowire Percolation Network for Flexible Transparent Conductors and Stretchable Electronics," Adv. Mater., vol. 26, pp. 5808–5814, 2014.
    [33] Q. Huang, K. N. Al-Milaji, and H. Zhao, "Inkjet Printing of Silver Nanowires for Stretchable Heaters," ACS Appl. Nano Mater., vol. 1, pp. 4528−4536, 2018.
    [34] Y. Y. Huang and E. M. Terentjev, "Tailoring the Electrical Properties of Carbon Nanotube– Polymer Composites," Adv. Funct. Mater., vol. 20, pp. 4062–4068, 2010.
    [35] K. Chen et al., "Printed Carbon Nanotube Electronics and Sensor Systems," Adv. Mater., vol. 28, pp. 4397–4414, 2016.
    [36] J. H. Kim et al., "Simple and cost-effective method of highly conductive and elastic carbon nanotube/ polydimethylsiloxane composite for wearable electronics," Sci Rep, vol. 8, pp. 1375, 2018.
    [37] J. Yuna et al., "Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array," Nano Energy, vol. 19, pp. 401–414, 2016.
    [38] M. Watanabe, H. Shirai, and T. Hirai, "Wrinkled polypyrrole electrode for electroactive polymer actuators," J. Appl. Phys., vol. 92, pp. 4631–4637, 2002.
    [39] C. Wang, W. Zheng, Z. Yue, C. O. Too, and G. G. Wallace, "Buckled, Stretchable Polypyrrole Electrodes for Battery Applications," Adv. Mater., vol. 23, pp. 3580–3584, 2011.
    [40] A. J. Bandodkar, R. Nuñez-Flores, W. Jia, and J. Wang, "All-Printed Stretchable Electrochemical Devices," Adv. Mater., vol. 27, pp. 3060–3065, 2015.
    [41] J.-S. Noh, "Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters," Polymers, vol. 8, pp. 123, 2016.
    [42] D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C.-K. Tee, J. A. Bolande, and Z. Bao, "Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates," Chem. Mater., vol. 24, pp. 373−382, 2012.
    [43] M. Vosgueritchian, D. J. Lipomi, and Z. Bao, "Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes," Adv. Funct. Mater., vol. 22, pp. 421–428, 2012.
    [44] K. Chen et al., "Printed Carbon Nanotube Electronics and Sensor Systems," Adv. Mater., vol. 28, pp. 4397–4414, 2016.
    [45] Y. Zhu and F. Xu, "Buckling of Aligned Carbon Nanotubes as Stretchable Conductors: A New Manufacturing Strategy," Adv. Mater., vol. 24, pp. 1073–1077, 2012.
    [46] L. Cai et al., "Highly Transparent and Conductive Stretchable Conductors Based on Hierarchical Reticulate Single-Walled Carbon Nanotube Architecture," Adv. Funct. Mater., vol. 22, pp. 5238–5244, 2012.
    [47] Y. Yu et al., "Flexible and transparent strain sensors based on super-aligned carbon nanotube films," Nanoscale, vol. 9, pp. 6716–6723, 2017.
    [48] J. Y. Woo, K. K. Kim, J. Lee, J. T. Kim, and C.-S. Han, "Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors," Nanotechnology, vol. 25, pp. 285203, 2014.
    [49] Z. Cui, F. R. Poblete, and Y. Zhu, "Tailoring the Temperature Coefficient of Resistance of Silver Nanowire Nanocomposites and their Application as Stretchable Temperature Sensors," ACS Appl. Mater. Interfaces vol. 11, pp. 17836−17842, 2019.
    [50] D. Li, W.-Y. Lai, Y.-Z. Zhang, and W. Huang, "Printable Transparent Conductive Films for Flexible Electronics," Adv. Mater., vol. 30, pp. 1704738, 2018.
    [51] G.-W. Huang, H.-M. Xiao, and S.-Y. Fu, "Paper-based silver-nanowire electronic circuits with outstanding electrical conductivity and extreme bending stability," Nanoscale, vol. 6, pp. 8495–8502, 2014.
    [52] J. Liang et al., "Silver Nanowire Percolation Network Soldered with Graphene Oxide at Room Temperature and Its Application for Fully Stretchable Polymer LightEmitting Diodes," ACS Nano, vol. 8, pp. 1590–1600, 2014.
    [53] K. G. Nair, D. Jayaseelan, and P. Biji, "Direct-writing of circuit interconnects on cellulose paper using ultra-long, silver nanowires based conducting ink," RSC Adv., vol. 5, pp. 76092–76100, 2015.
    [54] J. Tang et al., "K. G. Nair, D. Jayaseelan, and P. Biji, "Direct-writing of circuit interconnects on cellulose paper using ultra-long, silver nanowires based conducting ink," RSC Adv., vol. 5, pp. 76092–76100, 2015.," Sci Rep, vol. 5, pp. 16527, 2015.
    [55] Y. Joo et al., "Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor," Nanoscale, vol. 7, pp. 6208–6215, 2015.
    [56] J. Wang, C. Yan, W. Kang, and P. S. Lee, "High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors," Nanoscale, vol. 6, pp. 10734–10739, 2014.
    [57] WentingDang, V. Vinciguerra, L. Lorenzelli, and R. Dahiya, "Printable stretchable interconnects," Flex. Print. Electron., vol. 2, pp. 013003, 2017.
    [58] S. A. Ruiz and C. S. Chen, "Microcontact printing: A tool to pattern," Soft Matter, vol. 3, pp. 168–177, 2007.
    [59] C.-X. Liu and J.-W. Choi, "Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing," J. Micromech. Microeng., vol. 19, pp. 085019, 2009.
    [60] T. Kim, A. Canlier, G. H. Kim, J. Choi, M. Park, and S. M. Han, "Electrostatic Spray Deposition of Highly Transparent Silver Nanowire Electrode on Flexible Substrate," ACS Appl. Mater. Interfaces, vol. 5, p. 788−794, 2013.
    [61] Y. C. Lu and K. S. Chou, "Tailoring of silver wires and their performance as transparent conductive coatings," Nanotechnology, vol. 21, pp. 215707, 2010.
    [62] J.-L. Zhuang, D. Ar, X.-J. Yu, J.-X. Liu, and A. Terfort, "Patterned Deposition of Metal-Organic Frameworks onto Plastic, Paper, and Textile Substrates by Inkjet Printing of a Precursor Solution," Adv. Mater., vol. 25, pp. 4631–4635, 2013.
    [63] H. Minemawari et al., "Inkjet printing of single-crystal films," Nature, vol. 475, pp. 364–367, 2011.
    [64] R. Soukup, A. Hamáček, and J. Řeboun, "Organic Based Sensors: Novel Screen Printing Technique for Sensing Layers Deposition," Proc. Int. Spring Semin. Electron. Technol., pp. 19–24, 2012.
    [65] G. E. Jabbour, R. Radspinner, and N. Peyghambarian, "Screen Printing for the Fabrication of Organic Light-Emitting Devices," IEEE J. Sel. Top. Quantum Electron., vol. 7, pp. 769–773, 2001.
    [66] J. Liang, K. Tong, and Q. Pei, "A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors," Adv. Mater., vol. 28, pp. 5986–5996, 2016.
    [67] A. Abdelhalim, A. Abdellah, G. Scarpa, and P. Lugli, "Fabrication of carbon nanotube thin films on flexible substrates by spray deposition and transfer printing," Carbon, vol. 61, pp. 72–79, 2013.
    [68] F. Xu and Y. Zhu, "Highly Conductive and Stretchable Silver Nanowire Conductors," Adv. Mater., vol. 24, pp. 5117–5122, 2012.
    [69] J. Z. Yuan Liu, Heng Gao, Yan Wang, Qingxian Liu, Siya Huang, Chuan Fei Guo, and Zhifeng Ren, "Capillary-Force-Induced Cold Welding in Silver-Nanowire-Based Flexible Transparent Electrodes," Nano Lett. , vol. 17, pp. 1090−1096, 2017.

    無法下載圖示 校內:2024-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE