| 研究生: |
黃齡儀 Huang, Ling-Yi |
|---|---|
| 論文名稱: |
矽膠填充床內水汽吸/脫附反應之數值研究 A numerical study on moisture adsorption/desorption in silica-gel packed beds |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 矽膠填充床 、固體側阻抗模型 、進口空氣溫度 、進口空氣流速 、矽膠顆粒半徑 |
| 外文關鍵詞: | silica-gel packed bed, solid-side resistance (SSR) model, inlet air temperature, inlet air velocity, particle radius |
| 相關次數: | 點閱:142 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
矽膠乾燥劑廣泛應用於許多工業除濕過程,如射出成形原料之乾燥過程與太陽能蒸發式除濕空調系統等。其中為了幫助這些工業應用上的系統設計,必須瞭解矽膠吸脫附水汽反應中的質傳機制。在目前已存在之矽膠吸脫附水汽系列研究中,SSR模型 (solid-side resistance model) 因考量了多孔性矽膠之固體側質傳阻抗,故較過去的PGC模型 (pseudo-gas-side controlled model) 能更準確預測矽膠吸脫附水汽反應之過程。
而為了確認考量矽膠顆粒內部熱傳導阻抗與否,對SSR模型模擬結果之差異性大小,在本研究中我們透過改變Biot數對該兩種SSR模型進行討論。其中由於Biot數受矽膠粒徑與對流熱傳係數影響,而對流熱傳係數又由進口空氣流速決定,所以矽膠粒徑與進口空氣流速為影響兩種SSR模型模擬差異大小之重要因素。另一方面由於矽膠吸水為放熱反應,而溫升將造成矽膠吸附能力降低,亦即溫度為矽膠吸附反應之重要因素,故矽膠床進口空氣溫度亦為其水汽吸附反應值得探討之參數。
本研究中我們透過SSR模型模擬矽膠吸附水汽之反應,發現當進口空氣流速越大、矽膠粒徑越小時,前者將使總吸附水量上升較快,後者則相反,但兩者均會提前各反應階段的轉換時間,並使忽略熱傳導阻抗之差異較顯著。另一方面當進口空氣溫度提升時,系統整體溫升快,總吸附水量上升較慢。此外我們亦發現當我們發現當改變進口空氣流速或溫度時,忽略熱傳導阻抗均會使各反應階段的轉換時間較晚開始。
同時,在本研究中我們亦利用SSR模型針對本研究團隊過去所建立之實驗結果進行模擬比較。根據比較結果我們發現SSR模型因未考量實驗中空氣流速會隨著反應器軸向位置遞增而下降的現象,以及SSR模型缺乏考量實驗中填充床反應器壁面水流之對流散熱效果,造成其低估了系統整體散熱的速率。故本文中我們分別建議在SSR模型中增加Darcy定律以預測局部空氣流速,並且將SSR模型由僅含矽膠床一維軸向方向改為增加考量其徑向方向,再於矽膠床壁面增加對流散熱效果,以提高SSR模型模擬該實驗之準確性。
Silica-gel desiccant is widely used in various industrial dehumidifying processes. To help improve such system design, it requires understanding of the heat and mass transfer mechanism during moisture adsorption/desorption process of silica gel. Among current research models, SSR (solid-side resistance) model, with additional consideration of intraparticle mass transfer resistance, usually can predict more accurately than the earlier PGC (psuedo-gas-side controlled) model does. However, in previous studies, the effect of adjusting the key system parameters, and that of intraparticle thermal resistance, on silica-gel adsorption process have not been discussed. In the present study, it is found that increasing the inlet air velocity and temperature and the desiccant particle radius make the total mass of water adsorbed by silica gel increase faster. Besides, increasing the inlet air velocity and decreasing the particle radius make the effect of neglecting intraparticle thermal resistance in SSR model more remarkable.
On the other hand, to make SSR model fit the previous silica-gel adsorption experimental results in our research team more properly, we also use SSR model to simulate and compare with the results of the experiment. It is recommended that adding Darcy’s law in SSR model, extending SSR model from 1-D (with axial direction) to 2-D (with both axial and radial directions), and taking the heat convection on the wall of the reactor into account.
[1] A. A. Pesaran and A. F. Mills, "Moisture transport in silica gel packed beds—I.Theoretical study," International Journal of Heat and Mass Transfer, vol. 30, pp. 1037-1049, 1987.
[2] A. A. Pesaran and A. F. Mills, "Moisture transport in silica gel packed beds—II. Experimental study," International Journal of Heat and Mass Transfer, vol. 30, pp. 1051-1060, 1987.
[3] K. Kafui, "Transient heat and moisture transfer in thin silica gel beds," Journal of heat transfer, vol. 116, pp. 946-953, 1994.
[4] J. Clark, A. Mills, and H. Buchberg, "Design and testing of thin adiabatic desiccant beds for solar air conditioning applications," Journal of Solar Energy Engineering, vol. 103, pp. 89-91, 1981.
[5] J.-Y. San and G.-D. Jiang, "Modeling and testing of a silica gel packed-bed system," International Journal of Heat and Mass Transfer, vol. 37, pp. 1173-1179, 1994.
[6] İ. Solmuş, D. Andrew S. Rees, C. Yamalı, and D. Baker, "A two-energy equation model for dynamic heat and mass transfer in an adsorbent bed using silica gel/water pair," International Journal of Heat and Mass Transfer, vol. 55, pp. 5275-5288, 2012.
[7] D. Prahas, J. Liu, S. Ismadji, and M.-J. Wang, "Adsorption of tetramethylammonium hydroxide on activated carbon," Journal of Environmental Engineering, vol. 138, pp. 232-238, 2012.
[8] T. P. Syawitri, "Numerical Investigation into The Effect of Metal-foam Volume Fraction on The Performance of Metal Hydride Reactor Subjected to Periodic Charging and Discharging," master's thesis, National Cheng Kung University, 2015.
[9] K.-C. Chuang, "Numerical Performance Simulation of a Metal Hydride Reactor with Spatially Distributed Metal-foam Volume Fraction," master's thesis, National Cheng Kung University, Tainan, 2015.
[10] 蔡孟龍, "金屬氫化物儲氫系統之熱流分析: 釋氫壓力控制與導熱發泡金屬體積比對系統性能之影響," 博士論文, 機械工程學系碩博士班, 國立成功大學, 台南市, 2011.
[11] 林尚賢, "多孔性吸脫附反應器熱管理效能之實驗分析," 碩士論文, 機械工程學系碩博士班, 國立成功大學, 台南市, 2014.
[12] 李承恩, "金屬氫化物儲氫系統中導熱發泡金屬體積比分佈對系統性能之影響," 碩士論文, 機械工程學系碩博士班, 國立成功大學, 台南市, 2011.
[13] 崔瑋麟, "金屬氫化物顆粒儲氫性能之理論建模與數值模擬," 碩士論文, 機械工程學系碩博士班, 國立成功大學, 台南市, 2010.
[14] 朱鼎舜, "釋氫壓力控制對金屬儲氫罐供氫性能的影響," 碩士論文, 機械工程學系碩博士班, 國立成功大學, 台南市, 2008.
[15] 吳健銘, "多孔性吸附反應器之實驗研究與熱傳分析," 碩士論文, 機械工程學系碩博士班, 國立成功大學, 台南市, 2013.
[16] 蔣忠誠, 陳耀漢, 吳勝宏, and 徐啟銘, "工業常用吸附劑之熱分析研究," 修平學報, vol. 23, pp. 73-82, 2011.
[17] A. Chemicals. Silica Gel – Indicating Blue Silica Gel Exporter from Junagadh. Available: http://www.indiamart.com/ashirwadchemicals/silica-gel.html
[18] O. Hougen and W. Marshall, "Adsorption from a fluid stream flowing through a stationary granular bed," Chemical Engineering Progress, vol. 43, pp. 197-208, 1947.
[19] 倪建青, "定壓下矽膠吸附水蒸氣之理論模式之推導與固體側質傳擴散係數之量測," 博士論文, 機械工程學系碩博士班, 國立中興大學, 台中市, 2001.
[20] A. A. Pesaran, "Moisture transport in silica gel particle beds," Ph.D. Thesis, School of Engineering and Applied Science, California Univ., Los Angeles (USA), 1983.
[21] N. Wakao, S. Kaguei, and T. Funazkri, "Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: correlation of Nusselt numbers," Chemical engineering science, vol. 34, pp. 325-336, 1979.
[22] N. Wakao and T. Funazkri, "Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: correlation of Sherwood numbers," Chemical Engineering Science, vol. 33, pp. 1375-1384, 1978.
[23] M. Spiegel, S. Lipschutz, and J. Liu, Schaum's Outline of Mathematical Handbook of Formulas and Tables, 3rd: McGraw-Hill Education, 2008.