簡易檢索 / 詳目顯示

研究生: 黃冠瑛
Huang, Kuan-Ying
論文名稱: 聚對二氧環己酮之分形分枝組裝形成週期性環狀之特殊結晶形貌
Unique Crystalline Morphology of Periodic Rings Composed of Fractal-Growth Branching in Poly(p-dioxanone)
指導教授: 吳逸謨
Woo, Eamor M.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 61
中文關鍵詞: 聚對二氧環己酮聚對位乙烯基酚生物可分解高分子結晶環帶狀球晶樹枝狀球晶
外文關鍵詞: PPDO, PVPh, biodegradable polymer, crystallization, ring-banded spherulites, dendritic spherulites
相關次數: 點閱:71下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用偏光顯微鏡(POM)、原子力顯微鏡(AFM)、電子顯微鏡(SEM)、微分掃描熱卡計(DSC)與傅立葉轉換式紅外線光譜儀(FTIR)分別探討生物可分解高分子聚對二氧環己酮(PPDO)單一成分系統,與混摻聚對位乙烯基酚(PVPh)後的結晶行為。第一部分為單純PPDO系統,改變結晶溫度(Tc),以POM初步觀察球晶形貌,發現於特定區間Tc內,PPDO球晶有兩種形貌共存(Type-p與Type-n),選擇Tc = 76 ℃之樣品進一步分析,以AFM和SEM觀察球晶外部與內部結構的晶板排列,並討論兩種形貌相似之處,推測PPDO雙環帶狀球晶的生長機制,接著將此雙環帶狀球晶與Tc = 90 ℃之樣品比較,觀察結晶溫度提高後,對環帶狀球晶之影響。第二部分為PPDO/PVPh混摻系統,先改變組成比例與結晶溫度,同樣以POM進行球晶形貌的初步觀察,發現PVPh比例增加,球晶的分枝特徵逐漸明顯,而表面仍然保有雙環帶形貌,形成特殊的dendritic ring-banded spherulite,選擇PPDO/PVPh (75/25)於一特定Tc下結晶,結合AFM與SEM的結果,逐步分析此特殊球晶形貌的分枝規則與球晶表面的纖維狀小分枝晶板排列,並分別比較樹枝狀與球核表面的週期性雙環帶形貌,探討週期性環帶狀晶板排列與形成樹枝狀球晶的關聯性。本研究結合上表面與內部之晶板排列對應關係,了解晶板週期性且不連續地堆疊,探討環帶狀球晶3-D的生長機制,並討論氫鍵作用力對球晶形貌造成的影響。

    In the first part, neat PPDO ring-banded spherulites were observed at different Tc, demonstrating that the band spacing increases with increasing Tc. Dual-type ring-banded spherulites(Type-p and Type-n) only coexist at Tcs = 70-78 ℃. At Tc higher than 78 ℃, the band spacing decreases and the band becomes distorted. The top surface and interior lamellar arrangement of ring-banded spherulites of PPDO crystallized at 76 ℃ were investigated by using atomic-force microscopy (AFM), and scanning electron microscopy (SEM) to interpret the 3-D growth mechanism of ring-banded spherulites. And then we compare the difference between the spherulites crystallized at Tc = 76 and 90 ℃. Correlations between the top surface and interior assembly of double-ring bands are discussed.
    In the second part, PPDO/PVPh(75/25) blend system shows special dendritic/ring-banded morphology. Using AFM and SEM to observe the crystal arrangement, the correlations between the dendritic structure and the ring-banded pattern on the top surface of each branch are discussed.

    中文摘要 I Abstract II 誌謝 XI 目錄 XIV 表目錄 XVI 圖目錄 XVII 第一章 研究目的與文獻回顧 1 1.1 簡介 1 1.2 週期性環帶狀球晶之發展 2 1.3聚對二氧環己酮之相關研究 9 1.4 聚對位乙烯基酚之相關研究 13 1.5 研究動機與方向 16 第二章 實驗材料與方法 17 2.1實驗藥品與材料 17 2.2樣品製備 18 2.3實驗使用之儀器與方法 19 2.3.1 偏光顯微鏡 (Polarized-light optical microscopy, POM) 19 2.3.2 高解析度場發式掃描電子顯微鏡 (High resolution field emission scanning electron microscopy, HR-FESEM) 19 2.3.3 原子力顯微鏡 (Atomic force microscopy, AFM) 20 2.3.4 微分掃描熱卡計 (Differential scanning calorimeter, DSC) 20 2.3.5 傅立葉轉換式紅外線光譜儀 (Fourier-transform infrared spectroscopy, FTIR) 20 第三章 結果與討論 21 3.1 Neat PPDO系統之探討 21 3.1.1球晶形貌觀察 21 3.1.2球晶上表面與內部晶板排列 23 3.1.3 不同結晶溫度之球晶比較 33 3.2 PPDO/PVPh摻合系統之探討 36 3.2.1 球晶形貌觀察 36 3.2.2 球晶上表面晶板排列 39 3.2.3 分子間作用力與熱分析 48 第四章 結論 51 參考文獻 53 附錄 (Supporting information) 60

    [1] Y.-T. Yeh and E. M. Woo, "Anatomy into Interior Lamellar Assembly in Nuclei-Dependent Diversified Morphologies of poly(l-lactic acid)," Macromolecules, vol. 51, no. 19, pp. 7722-7733, 2018.
    [2] K. C. Yen and E. M. Woo, "Formation of dendrite crystals in poly(ethylene oxide) interacting with bioresourceful tannin," Polymer bulletin, vol. 62, no. 2, p. 225, 2009.
    [3] I. H. Huang, L. Chang, and E. M. Woo, "Tannin induced single crystalline morphology in poly(ethylene succinate)," Macromolecular Chemistry and Physics, vol. 212, no. 11, pp. 1155-1164, 2011.
    [4] Y. H. Mandala, E. M. Woo, H. Ni'mah, and S. Nurkhamidah, "Surface-relief and interior lamellar assembly in Janus-face spherulites of poly(butylene succinate) crystallized with poly(ethylene oxide)," Polymer, vol. 176, pp. 168-178, 2019.
    [5] Y.-L. Tseng, K.-N. Chuan, and E. M. Woo, "Unusual Ringed/Dendritic Sector Faces in poly(butylene succinate) Crystallized with Isomeric Polymer," Industrial & Engineering Chemistry Research, vol. 59, no. 16, pp. 7485-7494, 2020.
    [6] B. Lotz and S. Z. Cheng, "A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals," Polymer, vol. 46, no. 3, pp. 577-610, 2005.
    [7] E. M. Woo and G. Lugito, "Origins of periodic bands in polymer spherulites," European Polymer Journal, vol. 71, pp. 27-60, 2015.
    [8] "Wikipedia." https://en.wikipedia.org/wiki/Main_Page (accessed).
    [9] E. C. O’Neill and R. A. Field, "Underpinning starch biology with in vitro studies on carbohydrate-active enzymes and biosynthetic glycomaterials," Frontiers in bioengineering and biotechnology, vol. 3, p. 136, 2015.
    [10] S. Pérez and E. Bertoft, "The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review," Starch‐Stärke, vol. 62, no. 8, pp. 389-420, 2010.
    [11] E. M. Woo, G. Lugito, J.-H. Tsai, and A. J. Müller, "Hierarchically diminishing chirality effects on lamellar assembly in spherulites comprising chiral polymers," Macromolecules, vol. 49, no. 7, pp. 2698-2708, 2016.
    [12] S. Nurkhamidah and E. M. Woo, "Unconventional Non‐birefringent or Birefringent Concentric Ring‐Banded Spherulites in poly(L‐lactic acid) Thin Films," Macromolecular Chemistry and Physics, vol. 214, no. 6, pp. 673-680, 2013.
    [13] E. M. Woo, G. Lugito, and J. H. Tsai, "Effects of top confinement and diluents on morphology in crystallization of poly(l‐lactic acid) interacting with poly(ethylene oxide)," Journal of Polymer Science Part B: Polymer Physics, vol. 53, no. 16, pp. 1160-1170, 2015.
    [14] G. Lugito and E. M. Woo, "Novel approaches to study the crystal assembly in banded spherulites of poly(trimethylene terephthalate)," CrystEngComm, vol. 18, no. 33, pp. 6158-6165, 2016.
    [15] G. Lugito and E. M. Woo, "Three types of banded structures in highly birefringent poly(trimethylene terephthalate) spherulites," Journal of Polymer Science Part B: Polymer Physics, vol. 54, no. 13, pp. 1207-1216, 2016.
    [16] G. Lugito and E. M. Woo, "Multishell Oblate Spheroid Growth in poly(trimethylene terephthalate) Banded Spherulites," Macromolecules, vol. 50, no. 15, pp. 5898-5904, 2017.
    [17] G. Lugito, E. M. Woo, and W.-T. Chuang, "Interior lamellar assembly and optical birefringence in poly(trimethylene terephthalate) spherulites: Mechanisms from past to present," Crystals, vol. 7, no. 2, p. 56, 2017.
    [18] E. M. Woo, G. Lugito, and S. Chang, "Three-dimensional interior analyses on periodically banded spherulites of poly(dodecamethylene terephthalate)," CrystEngComm, vol. 20, no. 14, pp. 1935-1944, 2018.
    [19] E. M. Woo, L.-Y. Wang, and S. Nurkhamidah, "Crystal lamellae of mutually perpendicular orientations by dissecting onto interiors of poly(ethylene adipate) spherulites crystallized in bulk form," Macromolecules, vol. 45, no. 3, pp. 1375-1383, 2012.
    [20] G. Lugito and E. M. Woo, "Interior lamellar assembly in correlation to top-surface banding in crystallized poly(ethylene adipate)," Crystal growth & design, vol. 14, no. 10, pp. 4929-4936, 2014.
    [21] E. M. Woo, K.-C. Yen, Y.-T. Yeh, and L.-Y. Wang, "Biomimetically structured lamellae assembly in periodic banding of poly(ethylene adipate) crystals," Macromolecules, vol. 51, no. 10, pp. 3845-3854, 2018.
    [22] T.-Y. Chen, E. M. Woo, and S. Nagarajan, "periodic fractal-Growth Branching to nano-Structured Grating Aggregation in phthalic Acid," Scientific reports, vol. 10, no. 1, pp. 1-14, 2020.
    [23] T.-Y. Chen, E. M. Woo, and S. Nagarajan, "Crystal aggregation into periodically grating-banded assemblies in phthalic acid modulated by molten poly(ethylene oxide)," CrystEngComm, 2020.
    [24] E. M. Woo, G. Lugito, and C.-E. Yang, "Analysis of crystal assembly in banded spherulites of phthalic acid upon solvent evaporation," CrystEngComm, vol. 18, no. 6, pp. 977-985, 2016.
    [25] X. Cui, A. L. Rohl, A. Shtukenberg, and B. Kahr, "Twisted aspirin crystals," Journal of the American Chemical Society, vol. 135, no. 9, pp. 3395-3398, 2013.
    [26] A. G. Shtukenberg, J. Freudenthal, and B. Kahr, "Reversible twisting during helical hippuric acid crystal growth," Journal of the American Chemical Society, vol. 132, no. 27, pp. 9341-9349, 2010.
    [27] S. Nagarajan and E. M. Woo, "Morphological analyses evidencing corrugate-grating lamellae assembly in banded spherulites of poly(ethylene adipate)," Polymer, vol. 188, p. 122141, 2020.
    [28] K.-K. Yang, X.-L. Wang, and Y.-Z. Wang, "poly(p-dioxanone) and its copolymers," Journal of Macromolecular Science, Part C: Polymer Reviews, vol. 42, no. 3, pp. 373-398, 2002.
    [29] M. A. Sabino, J. Albuerne, A. J. Müller, J. Brisson, and R. E. Prud'homme, "Influence of in vitro hydrolytic degradation on the morphology and crystallization behavior of poly(p-dioxanone)," Biomacromolecules, vol. 5, no. 2, pp. 358-370, 2004.
    [30] K.-K. Yang, X.-L. Wang, Y.-Z. Wang, and H.-X. Huang, "Effects of molecular weights of poly(p-dioxanone) on its thermal, rheological and mechanical properties and in vitro degradability," Materials chemistry and physics, vol. 87, no. 1, pp. 218-221, 2004.
    [31] A. J. Müller et al., "Self-nucleation and crystallization kinetics of double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers," Faraday discussions, vol. 128, pp. 231-252, 2005.
    [32] W.-C. Nie, Q. Xiao, J.-M. Wu, F. Song, X.-L. Wang, and Y.-Z. Wang, "Dendritic crystallization and morphology control of random poly(p-dioxanone-co-butylene-co-succinate) copolyesters," European Polymer Journal, vol. 108, pp. 76-84, 2018.
    [33] S. Andjelić, D. Jamiolkowski, J. McDivitt, J. Fischer, and J. Zhou, "Spherulitic growth rates and morphology of absorbable poly(p‐dioxanone) homopolymer and its copolymer by hot‐stage optical microscopy," Journal of Polymer Science Part B: Polymer Physics, vol. 39, no. 24, pp. 3073-3089, 2001.
    [34] A. Pezzin, G. A. Van Ekenstein, C. Zavaglia, G. Ten Brinke, and E. Duek, "poly(para‐dioxanone) and poly(l‐lactic acid) blends: thermal, mechanical, and morphological properties," Journal of applied polymer science, vol. 88, no. 12, pp. 2744-2755, 2003.
    [35] Y. Bai, P. Wang, W. Bai, L. Zhang, Q. Li, and C. Xiong, "Miscibility, Thermal and Mechanical Properties of poly(para-dioxanone)/poly(lactic-co-glycolic acid) Blends," Journal of Polymers and the Environment, vol. 23, no. 3, pp. 367-373, 2015.
    [36] M. Dias, M. C. M. Antunes, A. R. Santos, and M. I. Felisberti, "Blends of poly(3-hydroxybutyrate) and poly(p-dioxanone): miscibility, thermal stability and biocompatibility," Journal of Materials Science: Materials in Medicine, vol. 19, no. 12, pp. 3535-3544, 2008.
    [37] J.-B. Zeng, Q.-Y. Zhu, Y.-D. Li, Z.-C. Qiu, and Y.-Z. Wang, "Unique crystalline/crystalline polymer blends of poly(ethylene succinate) and poly(p-dioxanone): miscibility and crystallization behaviors," The Journal of Physical Chemistry B, vol. 114, no. 46, pp. 14827-14833, 2010.
    [38] I. Martínez de Arenaza, N. Hernandez-Montero, E. Meaurio, and J.-R. Sarasua, "Competing Specific Interactions Investigated by Molecular Dynamics: Analysis of poly(p-dioxanone)/poly(vinylphenol) Blends," The Journal of Physical Chemistry B, vol. 117, no. 2, pp. 719-724, 2013.
    [39] N. Hernandez-Montero, E. Meaurio, K. Elmiloudi, and J.-R. Sarasua, "Novel miscible blends of poly(p-dioxanone) with poly(vinylphenol)," European polymer journal, vol. 48, no. 8, pp. 1455-1465, 2012.
    [40] A. Pezzin, G. A. Van Ekenstein, and E. Duek, "Melt behaviour, crystallinity and morphology of poly(p-dioxanone)," Polymer, vol. 42, no. 19, pp. 8303-8306, 2001.
    [41] M. Sabino, J. Feijoo, and A. Müller, "Crystallisation and morphology of poly(p‐dioxanone)," Macromolecular Chemistry and Physics, vol. 201, no. 18, pp. 2687-2698, 2000.
    [42] S. Gestí, B. Lotz, M. T. Casas, C. Alemán, and J. Puiggali, "Morphology and structure of poly (p-dioxanone)," European polymer journal, vol. 43, no. 11, pp. 4662-4674, 2007.
    [43] J.-B. Zeng, M. Srinivansan, S.-L. Li, R. Narayan, and Y.-Z. Wang, "Nonisothermal and isothermal cold crystallization behaviors of biodegradable poly(p-dioxanone)," Industrial & Engineering Chemistry Research, vol. 50, no. 8, pp. 4471-4477, 2011.
    [44] Y. Márquez, L. Franco, P. Turon, J. C. Martínez, and J. Puiggalí, "Study of non-isothermal crystallization of polydioxanone and analysis of morphological changes occurring during heating and cooling processes," Polymers, vol. 8, no. 10, p. 351, 2016.
    [45] Y. Furuhashi et al., "X‐Ray and Electron Diffraction Study of poly(p‐dioxanone)," Macromolecular rapid communications, vol. 25, no. 23, pp. 1943-1947, 2004.
    [46] H. Bourara, S. Hadjout, Z. Benabdelghani, and A. Etxeberria, "Miscibility and hydrogen bonding in blends of poly(4-vinylphenol)/poly(vinyl methyl ketone)," Polymers, vol. 6, no. 11, pp. 2752-2763, 2014.
    [47] L. T. Lee and E. M. Woo, "Miscible blends of poly(4‐vinyl phenol)/poly(trimethylene terephthalate)," Polymer international, vol. 53, no. 11, pp. 1813-1820, 2004.
    [48] L. Guo, H. Sato, T. Hashimoto, and Y. Ozaki, "FTIR study on hydrogen-bonding interactions in biodegradable polymer blends of poly(3-hydroxybutyrate) and poly(4-vinylphenol)," Macromolecules, vol. 43, no. 8, pp. 3897-3902, 2010.
    [49] P. Xing, L. Dong, Y. An, Z. Feng, M. Avella, and E. Martuscelli, "Miscibility and crystallization of poly(β-hydroxybutyrate) and poly(p-vinylphenol) blends," Macromolecules, vol. 30, no. 9, pp. 2726-2733, 1997.
    [50] G. Lugito, C.-C. Su, Y.-H. Wang, and E. M. Woo, "Nano-assembly of intertwining lamellae of opposite bending senses in poly(ethylene oxide) co-crystallizing with poly(p-vinyl phenol)," Journal of Polymer Research, vol. 24, no. 10, p. 166, 2017.
    [51] S. Nurkhamidah, E. M. Woo, Y.-T. Yeh, F. Luo, and V. Katiyar, "Lamellae Assembly in Dendritic Spherulites of poly(l-lactic Acid) Crystallized with Poly (p-Vinyl Phenol)," Polymers, vol. 10, no. 5, p. 545, 2018.
    [52] S. Nurkhamidah and E. M. Woo, "Mechanisms of Multiple Types of Lamellae and Spherulites in poly(l‐lactic acid) Interacting with poly(4‐vinyl phenol)," Macromolecular Chemistry and Physics, vol. 214, no. 20, pp. 2345-2354, 2013.

    下載圖示 校內:2023-07-31公開
    校外:2023-07-31公開
    QR CODE